#42-

THE STATE OF MAINE BEFORE THE PUBLIC UTILITIES COMMISSION

RE: INVESTIGATION OF SEABROOK INVOLVEMENT BY MAINE UTILITIES

DOCKET No.84-113 Phase 2

TESTIMONY OF PAUL CHERNICK ON BEHALF OF THE MAINE PUBLIC UTILITIES COMMISSION STAFF

December 14, 1984

2.

Table of Contents

<pre>1 - INTRODUCTION AND QUALIFICATIONS</pre>	1
2 - THE NUCLEAR INDUSTRY IN 1972	9
3 - NUCLEAR PROBLEMS IN THE MID-1970'S	33
4 - FINANCIAL CRUNCH: 1977 AND 1978	53
5 - MID-1980: TMI, DPU 20055	72
6 - THE EARLY 1980'S	89
7 - ECONOMIC ANALYSIS	95
8 - FINANCIAL ANALYSIS	110
9 - LOAD FORECASTING	116
 9.1 - The Load Forecasts of MPS 9.2 - The Load Forecasts of BHE 9.3 - The Load Forecasts of CMP 9.4 - The Load Forecasts of NEPOOL 10 - CONCLUSIONS AND RECOMMENDATIONS BIBLIOGRAPHY TABLES AND GRAPHS APPENDICES 	119 121 124 127 129 138

6

- A. RESUME OF PAUL CHERNICK B. COST ESTIMATE HISTORIES C. TESTIMONY OF P. CHERNICK, MDPU 19494 D. TESTIMONY OF P. CHERNICK, NRC 50-471

TESTIMONY OF PAUL CHERNICK

ON BEHALF OF THE MAINE PUBLIC UTILITIES COMMISSION

1 - INTRODUCTION AND QUALIFICATIONS

- Q: Mr. Chernick, would you state your name, occupation and business address?
- A: My name is Paul L. Chernick. I am employed as a research associate by Analysis and Inference, Inc., 10 Post Office Square, Suite 970, Boston, Massachusetts.
- Q: Mr. Chernick, would you please briefly summarize your professional education and experience?
- A: I received a S.B. degree from the Massachusetts Institute of Technology in June, 1974 from the Civil Engineering Department, and a S.M. degree from the Massachusetts Institute of Technology in February, 1978 in Technology and Policy. I have been elected to membership in the civil engineering honorary society Chi Epsilon, and the engineering honor society Tau Beta Pi, and to associate membership in the research honorary society Sigma Xi.

- 1 -

I was a Utility Analyst for the Massachusetts Attorney General for over three years, and was involved in numerous aspects of utility rate design, costing, load forecasting, and evaluation of power supply options. My work has considered, among other things, the need for new power supply investments, and the likely costs of those investments, particularly in nuclear power, and the availability and cost of alternatives to proposed supply sources.

In my current position, I have advised a variety of clients on utility matters. My resume is attached to this testimony as Appendix A.

- Q: Mr. Chernick, have you testified previously in utility proceedings?
- A: Yes. I have testified approximately thirty-five times on utility issues before this Commission and such other agencies as the Massachusetts Energy Facilities Siting Council, the Texas Public Utilities Commission, the Illinois Commerce Commission, the New Mexico Public Service Commission, the District of Columbia Public Service Commission, the New Hampshire Public Utilities Commission, the Connecticut Department of Public Utility Control, the Michigan Public Service Commission, the Pennsylvania Public Utilities Commission, and the Atomic Safety and Licensing Board of the U.S. Nuclear Regulatory Commission. A detailed list of my

- 2 -

previous testimony is contained in my resume. Subjects I have testified on include cost allocation, rate design, long range energy and demand forecasts, costs of nuclear power, conservation costs and potential effectiveness, generation system reliability, fuel efficiency standards, and ratemaking for utility production investments and conservation programs.

- Q: Do you have a track record of accurate predictions in capacity planning?
- A: Several of my criticisms of utility projections have been confirmed by subsequent events or by the utilities themselves. In the late 1970's, I pointed out numerous errors in New England utility load forecasts, and predicted that growth rates would be lower than the utilities expected. Many of my criticisms have been incorporated in subsequent forecasts, and load growth has almost universally been lower than the utility forecast. For example, in DPU 19494, I reviewed the 1978 Central Maine Power load forecast and identified several aspects of that forecast which were inconsistent with the historical record, or otherwise projected load growth without sufficient support.

In DPU 19494 and NRC 50-471, I reviewed the NEPOOL forecast, both for the 1978 edition (which was the last version to be compiled as the sum of the utilities' own forecasts) and the

- 3 -

1979 edition (the first of the new end-use forecasts by state). I identified many overstatements and other errors in both versions. The 1978 version predicted a winter peak in 1983/84 of 19670 MW (compared to 15019 MW in 1977/78), and a ten-year growth rate of 4.5%; corresponding figures from the 1979 forecast were 19755 MW and 3.8% growth. Actual 1983/84 winter peak was 15949 MW, and the 1984 NEPOOL forecast predicts 2.0% annual growth in the long term. The history of NEPOOL load forecasts is presented in Figure 1.2.

Among the utility forecasts underlying the 1978 NEPOOL forecast, one of the largest contributors to predicted growth was the forecast of Public Service of New Hampshire (PSNH). In my review in DPU 19494, I identified this forecast as being outstanding for the unreasonable methodologies and implausible assumptions it incorporated. The history of PSNH load forecasts is presented in Figure 1.3.

My analyses of other utility forecasts, including Northeast Utilities, Boston Edison, and various smaller utilities, have been similarly confirmed by the low load growth over the past few years, and by repeated downward revisions in utility forecasts.

My projections of nuclear power costs have been somewhat more recent, but utility projections have already confirmed my

- 4 -

analyses. For example, in the Pilgrim 2 construction permit proceeding (NRC 50-471), Boston Edison was projecting a cost of \$1.895 billion. With techniques similar to those used in this testimony, I projected a cost between \$3.40 and \$4.93 billion in my testimony of June, 1979. Boston Edison's final cost estimate (issued when Pilgrim 2 was canceled in September 1981) stood at \$4.0 billion. Figure 1.4 compares my Pilgrim 2 estimates to those of BECo.

In MDPU 20055, PSNH projected in-service dates for Seabrook of about 4/83 and 2/85, at a total cost of \$2.8 billion. My testimony of January, 1980 predicted in-service dates of 10/85 and 10/87, with a cost around \$5.3-\$5.8 billion on PSNH's schedule or \$7.8 billion on a more realistic schedule. At the time I filed my testimony in NHPUC DE 81-312 (October 1982), PSNH was projecting in-service dates of 2/84 and 5/86, with a total cost of \$3.6 billion, while I projected dates of about 3/86 and 6/89, and a cost of about \$9.6 billion. Within two months of my filing, PSNH had revised its estimates to values of 12/84, 7/87, and \$5.2 billion. On March 1, 1984, PSNH released a new cost estimate of \$9 billion, with in-service dates of 7/86 and 12/90. In June 1983, I updated my analysis for CPUCA 83-03-01, and estimated a total cost of \$10.3 billion, with COD's of 11/86

- 5 -

and 3/91.¹ Thus, PSNH's estimates of Seabrook in-service dates and costs have increased by a factor of more than three since the filing of DPU 20055, and are now relatively close to my projections. Figure 1.5 compares the history of PSNH cost estimates for Seabrook to my estimates, and Table 1.1 lists PSNH's projections of Seabrook cost and schedule.

Critiquing and improving on utility load forecasts and nuclear power cost projections has not been very difficult over the last few years. Many other analysts have also noticed that various of these utility projections were inconsistent with reality.

Q: What is the subject of your testimony?

.

A: I have been asked to review the information available to Central Maine Power (CMP), Maine Public Service (MPS) and Bangor Hydro-Electric (BHE) in connection with their various decisions to initiate and continue their involvement in the second unit of the Seabrook nuclear power plant construction project. I have specifically been asked to determine what a responsible and prudent utility would have known at critical points in the project, and to describe responsible responses to the information which was available at those times.

1. Those results were averages, which included methodologies which I knew to be biased on the low side. The methods used in this testimony produced COD estimates of 10/87 and 6/94.

Q: How is your testimony structured?

The second section of my testimony will discuss the state of A: the nuclear power industry in 1972, when Central Maine Power (CMP) signed the Seabrook 2 Joint Ownership Agreement, and describe some of the facts of which CMP was, or should have been, aware at that time. I will then consider, in section 3, the changes in circumstances between 1972 and 1976, when Seabrook received its construction permit, and identify some of the concerns with which the Seabrook 2 participants should have been dealing, and of which MPS and BHE should have been aware in 1977 and 1978 when they were in the process of buying Seabrook shares from NU. The fourth portion of this testimony will consider the state of the industry, Seabrook 2, and the participants in December, 1978, following the first major financial crisis of the joint owners, after the construction suspension and restart. This point in time was also significant, as it marked the conclusion of the process of the initial MPS and BHE purchases of Seabrook shares, and the beginning of the process of all three utilities increasing their participation through purchases from PSNH and (in the case of CMP) from UI. In the fifth section, I will review the same issues as of mid-1980, after the accident at Three Mile Island and near the end of the BHE and MPS purchase processes. Section six brings the analysis up to December, 1982, at the time Seabrook's total cost jumped from \$3.56 billion to \$5.12 billion. Section seven repeats

- 7 -

contemporaneous cost-benefit analyses for realistic Seabrook costs, and Section eight considers the financial consequences of building Seabrook 2. Section nine briefly reviews the quality of the utilities' load forecasts in the 1970's, to determine the appropriate role of those forecasts in the Seabrook purchase decisions. Finally, in my conclusions, I will summarize and interpret the results of the previous sections, describe the actions which prudent utilities would have taken at various points in time, and suggest ratemaking treatment of the Seabrook 2 investments, in light of the facts I present.

- 8 -

2 - THE NUCLEAR INDUSTRY IN 1972

- Q: Why is the status of the commercial nuclear power industry in 1972 pertinent to this proceeding?
- A: It was in 1972 that CMP decided to sign the Seabrook 2 Joint Ownership agreement, obligating CMP to pay 2.55% of project costs.
- Q: When it entered into the ownership agreement, were there any particular considerations of which CMP should have been aware?
- A: Yes. Any utility with large enough a staff to keep up with the general industry literature,² should have been aware of Conv two crucial facts:
 - Nuclear cost estimates were unreliable and almost always understated,
 - Nuclear plant construction costs were increasing, so that the units ordered, started, or completed in any year were more expensive than those of the year before,

^{2.} Examples of this literature would include **Electrical World** and **Power Engineering** magazines. All three utilities considered in this testimony pass this test.

- 3. Nuclear plant construction schedules were increasing, and the times from order to construction permit, and from permit to commercial operation, grew longer for each new cohort of plants, and
- Nuclear schedules were unpredictable and usually stretched out well beyond the expectations of the owners and their architect/engineers.

Q: On what do you base this statement?

I have two sources. First, there is the data itself. A: Table 2.1 summarizes the cost estimate histories of all the commercial nuclear power plants which were in commercial operation by the end of 1972, and which were built without any extraordinary cost guarantees.³ For each of these six units, Table 2.1 lists the actual commercial operation date (COD), the actual construction cost, the date of the first cost estimate for which I was able to obtain suitable data, and the estimated cost and COD for that estimate. It is certainly not difficult to determine that both the cost estimates and construction schedules of these units grew significantly during their planning and construction.

3. I have excluded both the turnkey plants, for which the manufacturers provided at least partial cost caps, and the reactors for which the federal government provided cost sharing.

Most of my cost and schedule history data is drawn from the database listed in Appendix B, which shows all of the changes in cost or schedule indicated in cost estimate history summaries provided by the Energy Information Administration (EIA). Those summaries are condensations of the Quarterly Construction Progress Reports (Form HQ-254 and Form EIA-254) filed by most nuclear utilities with the Atomic Energy Commission (AEC), and later with its successor agencies, the Energy Research and Development Administration (ERDA) and This data base also includes later estimates for these EIA. units. Where important data was missing from the HQ-254's, data from various published sources was used.⁴ Final cost and commercial operation date (COD) information, for example, is generally from reports to the FPC and the FERC, and the operation date information may therefore differ from NRC figures.

To quantify the extent of the errors in cost and schedule estimation for these six units, I have computed four statistics for each estimate: the projected years to COD (or "duration") at the time of the estimate, the ratio of final cost to the projected cost at the time of the estimate (the "cost ratio"); the cost ratio expressed as a growth rate,

4. These sources included the AEC/ERDA annual Nuclear Industry, the Nuclear News World List of Nuclear Power Plants, and occasionally data from the utilities.

- 11 -

annualized by the estimated time to completion (the "myopia factor"); and the ratio of the actual remaining time until commercial operation to the projected time (the "duration ratio"). These terms are all fairly self-explanatory, except for myopia, which is defined as

(cost ratio) (1/estimated duration)

Roughly speaking, the average myopia indicates that the actual cost of these units was typically 18% greater than the estimate, for each year that construction was expected to take. The cost ratio demonstrates that the average plant cost over twice as much to complete as initially estimated, while the duration ratio indicates that the plants took almost half again as long as was projected.

Q: Why do you present the data and the results in this form?

A: The raw data on cost estimate histories indicate that cost overruns and schedule slippage was routine, and nearly universal. This relationship would be clearly apparent to any observer. It is more difficult to determine (and particularly to quantify) just what lesson the observer should have learned from the data. I do not believe, for example, that it is fair to assume that each utility involved in (or observing) nuclear construction should have done regression analyses on the cost trends, as were later performed by Bupp, et al., Komanoff, and Perl. Those are

- 12 -

fairly sophisticated approaches, which are sensitive to the exact data and functional forms used in the analyses. Looking at the percentage cost overrun, or annualizing that value, or comparing actual and projected construction durations, all strike me as being simple, obvious ways of summarizing the large and growing experience of nuclear construction. These were the kinds of questions which I asked, and the kind of analyses I undertook, when I first found out in 1978 and 1979 that nuclear plant cost and schedule estimates were frequently incorrect. I am not suggesting that the Maine utilities should have performed exactly the same summary calculations that I present in this testimony, but I am suggesting that they should have examined the uncertainties and contingencies involved in nuclear investments,⁵ that they should have done some simple analysis of the historical data, and that the same general conclusions could have been reached through several types of analysis, including an informal examination of the data. Therefore, I believe that it is appropriate to judge the utilities' prudence as if they had these calculations before them, since they should have been familiar with the data and should have noted (formally or informally, rigorously or intuitively) the same patterns and relationships I present.

5. As I will show below, the utility industry literature provided ample notice that nuclear plant construction was not "business as usual."

Q: What do these results imply for Seabrook 2?

- If the nuclear industry's ability to forecast costs had not A: improved, it would be appropriate to apply these results to the initial cost and schedule estimates for Seabrook 2 (\$486 million and a COD of 11/81, or 9.76 years from the 2/72 estimate date), to produce revised or corrected estimates.6 Multiplying \$486 million by the average cost ratio of 2.11 produces a corrected cost estimate of \$1023 million. However, the estimated duration for Seabrook 2 was somewhat longer than for the units in Table 2.1, so applying the average myopia factor of 18.4% for 9.76 years would produce a cost ratio of 5.22, and a Seabrook 2 cost of \$2535 million. Finally, multiplying the estimated Seabrook 2 duration ratio by the average duration ratio of 1.444 produces a corrected duration estimate of 14.09 years, and a COD of 3/86. Thus, if the factors which had caused other nuclear power plant estimates to be incorrect also operated for Seabrook 2, it would be considerably more expensive and time-consuming to construct than was implied by the official projections from PSNH and the architect/engineer (A/E), United Engineers and Constructors (UE&C).
- Q: Have you performed any other analyses of the nuclear power plant cost and schedule information available by the end of

6. The same adjustment technique can be applied to Seabrook 1 as well.

1972?

A: Yes. Table 2.2 repeats the duration analysis in Table 2.1, but for the turnkey and demonstration units excluded from the previous table. As would be expected, the cost estimates for the turnkey units tended to be considerably more stable than for the conventionally priced units, but the two demonstration units for which I have data are even worse than the later commercial units. The duration ratio for this entire set is nearly as bad as for the commercial units.

Tables 2.3 and 2.4 list the units which were under construction as of the end of 1972, and for which at least two cost or schedule estimates were available. For each unit, these tables list the earliest available estimate and the most recent estimate as of the end of 1972. I have computed two summary statistics. The first statistic is the "cost growth rate", simply the annual rate of increase in the cost estimate, from the first projection to the most recent. The second statistic is the "progress ratio", which is the ratio of progress towards completion (the decrease in projected months to operation), divided by elapsed months, both calculated from the first available estimate to the most recent estimate as of 12/72. The data from which this analysis is taken may also be found in Appendix B. To calculate the effect on Seabrook 2 if these trends had

extended to its cost and schedule evolution, we may divide the projection of 9.76 years by the experience-weighted⁷ average progress ratio of 45%, to yield a corrected duration of 21.7 years (indicating that Seabrook 2 would have been completed in 10/93) and increased the cost estimate of \$486 million by 21.7 years of cost growth at 18.6% annually, for a final cost of \$19.8 billion.

- Q: Do you mean that a prudent utility would have expected Seabrook 2 to be completed in the 1990's at a cost of \$20 billion?
- A: No. I would have expected a prudent utility to know that <u>if</u> <u>recent experience continued</u>, Seabrook 2 would not be completed, and might well be cancelled after considerable investment had been made in it. That prudent utility would also have known that, even if the historical experience moderated considerably, Seabrook 2 would take a long time to build and would be very expensive, and that completion of the unit at anything like PSNH's cost estimate would require a radical change in the nuclear constructin environment.
- Q: What significance do these results have for Central Maine Power's decision to enter into the Seabrook 2 joint ownership agreement?

7. Throughout this testimony, whenever averages are calculated on both a simple and an experience-weighted basis, I use the weighted averages in the text.

- 16 -

- A: They indicate that both CMP and PSNH knew, or should have known, while CMP was deciding to join in constructing Seabrook 2, that construction cost and duration estimates for other nuclear units had been significantly understated, and thus that the cost and schedule estimates for Seabrook 2 were likely to be less reliable than estimates for other (non-nuclear) utility projects.⁸ Both utilities should also have been aware that continuation of these trends would have resulted in a very expensive plant, or in one which was simply impossible to complete. As it happens, both of these events occurred.
- Q: Are there any particular reasons to believe that CMP and PSNH knew, or should have known, that nuclear cost and schedule estimates were subject to very large overruns?
- A: Yes. The cost and schedule estimate histories for New England nuclear units which entered commercial operation by 1972 are listed in Table 2.5.⁹ The cost data for Connecticut Yankee and Millstone 1 reflect their turnkey status. The Maine Yankee actual data is somewhat understated since it was declared "commercial" at 75% power. These units are in the

9. Yankee Rowe is omitted for lack of data.

- 17 -

^{8.} These conclusions, and my subsequent conclusions regarding knowledge of the problems of the nuclear industry, generally apply to BHE and MPS as well, but are less relevant to this time frame, since they did not buy into Seabrook until much more bad news was available.

figurative back yard of both utilities, and the various utilities have varying interests in the Yankees: PSNH owns 5% of Connecticut Yankee, 4% of Vermont Yankee and 5% of Maine Yankee; CMP is the lead utility at Maine Yankee (owning 38%), and is also a participant in the Vermont (4%) and Connecticut (6%) Yankee plants; BHE owns 7% of Maine Yankee; and MPS owns 5% of Maine Yankee. In addition, Yankee Atomic had a role in the construction management for all the Yankee plants, as well as for Seabrook.

In light of both the national and the regional experience with completed nuclear plants, and the national experience with those still under construction, it would not have been reasonable to place much faith in the quality of conventional cost estimates for Seabrook 2.

- Q: What was the second source of your belief that CMP and PSNH should have known in 1972 that nuclear cost and schedule estimates were likely to be unreliable and understated?
- A: It was common knowledge within the utility industry that nuclear plant costs and schedules had been subject to what were then considered to be shocking amounts of escalation and slippage. Representatives of one architect/engineer (or A/E), Gilbert Associates, identified a large number of problems facing nuclear construction:

- 18 -

The utility industry, about eight years ago, believed that a large light water reactor plant could be built for \$125 per kilowatt or less. Today plants to be completed about eight years hence are generally being estimated at close to \$400 per kilowatt, which is more than a 300 percent increase in expected costs over an eight-year period. Nuclear plant costs, then, have not merely evolved in eight years; they have exploded.

Of course, not all utility executives accept estimates of \$400 per kilowatt for their future plants. They believe that they can build plants for less. Maybe they can. Perhaps they are more fortunate than most utilities with regard to such factors as construction labor, site availability, and environmental opposition within their service areas. On the other hand, maybe they are continuing the industry's past record of underestimating nuclear plant costs.

÷

14.1

1.1

Any analysis of past and current estimates quickly indicates the fact that almost all past estimates and many current estimates are far below what will actually be experienced.

· ..

This analysis, which covers 1968 estimates for plants to be completed in the early 1970's on which adequate cost data could be compiled, shows that original cost estimates were about \$150 per kilowatt lower than will actually be experienced for those plants.

The full cost impact of environmental and safeguards backfitting has not yet been realized. In fact, the door has just been opened to cost increases resulting from environmental activity.

While it is true that very few new safeguards have been introduced since 1968, existing requirements have been broadened, and the study depth extended. There is no real indication of policy change nor saturation of areas requiring design analyses for contingency situations. The cost of providing a "safe plant" will continue to increase in the foreseeable future.

This will probably add a significant amount each year to plant cost. (McTague, <u>et al.</u> 1972)

- 19 -

The same problem was described by employees of another A/E (Burns and Roe) as

The rising trend of construction and capital costs for new electrical generating plants is a matter of major importance and of increasing concern to the entire utility industry. (Roe and Young 1972)

Those authors discussed several reasons for the increased costs, including construction delays and unanticipated complexity of work, especially for nuclear plants, and observed that

Of course current licensing problems with nuclear plants must be cleared up if [potential nuclear] cost advantages are to be realized,

and concluded that

In summary, still another crisis is at hand in the electrical generating industry. Continuation of the rapid growth which has been occurring in capital costs will make financing and provision of badly needed increases in electrical generating capacity even more difficult to achieve. The task is clear, but the solutions will not come easily. A combined effort by business, labor, government and the public will be necessary if the rapid growth of plant costs is to be controlled . .

Electrical World's annual series of nuclear surveys indicated similar concerns. For example, the 1971 survey, entitled "Nuclear Schedules Face Uncertainty", observed that

The big news is the continuing stretchout in schedules. In last year's survey, 1975 was the "big year," with more than 20,000 Mw scheduled for commercial operation. Reappraisals during the year now place the total for 1975 at only 13,049 Mw, and shift the peak to 1977. .

The National Environmental Policy Act, and particularly the Calvert Cliff court decision forcing new AEC interpretation of that law, have recently added even more dramatic uncertainties to plant schedules. Indeed, says Walter Mitchell III, VP of Southern Nuclear Engineering, pending changes in licensing procedures brought about by the Calvert Cliff's decision may soon make obsolete many of the schedule dates tabulated on the following pages.

and the 1972 survey, although it was headlined "Lead Times Stabilizing", noted that

58 units in this year's listing show scheduled completion dates that have been set back since last year.

Some optimism has been shown in the schedules reported by utilities for 1974-75, suggests Mitchell. "Several 1975 schedules look hard to meet," he says. Perhaps significantly, only two units are now scheduled for 1976.

The Federal Power Commission (FPC) also recognized and publicized the problems of the nuclear power industry. In

the National Power Survey, in 1970, the FPC observed

Because the nuclear industry is in a stage of dynamic growth, it is difficult to establish precise data for the present and future costs of nuclear plants. The nuclear industry today is characterized by an unprecedented commitment of new technologywhich has been reflected in capital costs attributed to delayed deliveries of vital components, the introduction of new or more stringent codes and standards, changes in regulatory requirements, and the extension of construction schedules coupled with current high interest rates and escalation in costs of labor, equipment and materials.

An indication of the escalation in estimated capital costs for a 1,000 mw LWR plant is provided in Table II-11 which shows that the approximately

10. In 1970, inflation was running around 5%, and corporate bonds were yielding 8-9%.

\$135 per kw estimates for this size plant made in March 1967 had increased to about \$220 per kw when estimated in June of 1968, and to more than \$320 in 1970. It will be noted that the estimates for virtually all of the components of the plant direct and indirect costs increased substantially. These increases in combination with lengthening construction schedules, labor rates and interest costs resulted in an estimated overall plant cost in 1970 of almost 2 1/2 times that estimated in 1967. . .

It is estimated that cost reductions will accrue in the future through increased business volume and acquired experiences in construction techniques and component design factors. These reductions could be in the order of \$10-\$15/kw. Other factors that can have a profound influence on cost are licensing requirements, site preparation, cooling water requirements, labor productivity, and rates, inflation, etc. that make future predictions highly unpredictable.

The very large capital requirements for nuclear plants make their costs sensitive to interest rates,taxes, insurance, depreciation, etc. The comparatively long periods required for licensing and construction can cause considerable variations in interest during construction. Slippage in construction schedules, regardless of the reasons, thus can result in a significant increase in the capital cost of a nuclear plant. Adhering to the shortest possible schedule of construction is one of the most serious problems facing the industry now and in the foreseeable future. (pages IV-1-56 to 58)

The report also quoted some of the concerns of Philip Sporn, Chairman of American Electric Power (page II-4-22), and included the following disclaimer below a chart of projected nuclear plant costs:

IN THE PERIOD SINCE THE CHART WAS PRODUCED (JANUARY 1, 1968) COSTS HAVE BEEN RISING SHARPLY: CONSIDER THIS FACT WHEN REFERRING TO CHART. (page II-1-33)

The FPC also commented on the rising costs of nuclear plants

in the introduction to the 1970 edition of the annual Steam Plant Books (FPC, various), the FPC staff provided a summary that would be repeated, in almost the same terms, year after year:

In the first nine months of 1971, [announcements for new capacity additions] were 69% fossil and 31% nuclear . ., illustrating the continuing acceptance of nuclear power by utilities, despite sharp capital cost increases and well publicized licensing difficulties. In the 1965-68 period, the average capital cost of nuclear units ordered was about \$150/kWe. However, as a result of longer construction periods, added environmental equipment and high rates of escalation, the capital costs of nuclear units ordered in 1970 has been estimated to average about \$250/kWe, by the time they come into operation. For 1971 the comparable figure has been estimated to be about \$300/kWe.

In 1970, the increasing national concern for the environment began to affect nuclear projects. Environmental organizations intervened in a number of licensing proceedings; AEC regulations on radioactive discharges were criticized as too permissive; and the National Environmental Policy Act of 1969 required new AEC procedures and the preparation of environmental statements for each plant. In 1971, in the Calvert Cliffs decision, the courts held that the AEC's environmental review procedures were inadequate, raising the prospect of regulatory delays for a significant number of new nuclear units.

Delays of a year or more from scheduled commercial operation dates are being experienced for many nuclear units. The causes include technical and construction problems, increasingly detailed AEC reviews, the inexperience of many utilities and their architect-engineers with nuclear power, and the impact of environmental legislation and opposition.

This, and each of the subsequent revisions in expectations, seems to have been a suprise to the FPC staff, which accompanied each announcement with its judgement that growth in nuclear capacity was inevitable and desirable.

- Q: How should these facts have affected the behavior of PSNH and CMP in 1972?
- A: PSNH should have realized that its cost estimates, which were methodologically similar to earlier, understated estimates, were also subject to significant overruns. As the lead utility in Seabrook 2, PSNH had a moral, and perhaps a legal, responsibility to inform its potential partners of the risks they were undertaking, and to clearly identify its cost estimate as a routine nuclear plant cost estimate, subject to all the problems of that genre.¹¹ Similar obligations may extend to UE&C and Yankee Atomic.

Furthermore, it is increasingly clear that many nuclear cost estimates were never intended to be predictions of the final cost of the plant: they were budget targets and cost-control documents. This issue is discussed at some length in Meyer (1984). Employees of MAC, in testimony filed by Central Maine Power and Maine Public Service in their current rate cases, summarize this practice:

- 24 -

^{11.} Examples of these problems would include the exclusion of many potential costs, the failure to incorporate sufficient contingency for current and future regulatory changes, and the absence of an allowance for the problems of building a plant whose design is still changing.

PSNH established schedules that required superior effort. This strategy is generally appropriate because it demands the best possible performance from contractors. (Dittmar and Ward, page 25)

The MAC analysis further considered the tradeoffs between conservative and optimistic estimates, and explained the construction management advantages of intentionally optimistic estimates:

If a budget is based on an overly conservative (high) estimate which establishes easily attained goals, a project's cost is likely to rise to fulfill the prediction. The use of aggressive targets is a management approach which, when reasonably applied, provides incentive for improving performance. If unrealistic cost or schedule targets are maintained too long, a project can be affected adversely. In such situations, it is difficult to hold people accountable for goals that they know are unrealistic. Morale problems may occur which could reduce productivity, cause delays or increase cost. A more serious consequence of managing too unrealistically aggressive targets may occur if activities are improperly sequenced such that work cannot be accomplished efficiently because of artificially induced constraints. (Ibid, page IV-6)

UI has also recognized this problem, as demonstrated by the testimony of its President and other officials before the CPUCA filed 8/1/84:

The project management estimate, used by the project manager to control construction of the facility, should be established as a challenging but achievable goal. Depending upon the degree of challenge desired, the project management estimate should have a probability of 10% to 30% of not being exceeded . . [T]he project management estimate serves the need to maintain tight project controls . .

Unfortunately, much less than 10% of nuclear cost estimates

have been achieved, so the cost control function seems to have been overdone. It also appears that nuclear cost estimates routinely exclude effects of future, pending, and newly effective regulations which have not yet been reflected in the plant drawings, and of the other complications of building a nuclear plant.

- Q: Should CMP have been aware of the same considerations?
- A: Assuming even the most cursory familiarity with industry publications and experience, CMP also should have been aware of the previous problems in the nuclear industry. CMP has not offered any evidence to suggest that CMP ever critically reviewed any estimate it received from PSNH, at least until 1980,¹² in the light of industry (or New England) experience. If this was due to vigorous PSNH representations, CMP may have been an excessively credulous victim. If CMP's confidence in the cost and schedule estimates were entirely due to CMP's failure to credit current experience, CMP would appear to have been acting in an imprudent and irresponsible manner.

By the time it signed the participation agreement, CMP should

12. Even this "review" consisted only of the suggestion that the then-current cost estimate might be subjected to a modest 25% increase. It was late 1983 before CMP commissioned an independent review of Seabrook costs (NERA, 1984).

have been in a position to extract from PSNH either more realistic estimate ranges, or the information necessary to estimate a reasonable CMP contingency. Its apparent failure to do so also appears to be imprudent, unless PSNH's behavior was such as to transfer the responsibility to PSNH. For example, if PSNH assured CMP that the estimate actually included a 100% contingency, while it only included a 3% contingency, CMP may argue that it attempted to act in a responsible manner, but was defrauded by PSNH (and perhaps UE&C as well) to secure CMP's participation in the project. If, on the other hand, CMP's reliance on the PSNH/UE&C estimates resulted entirely from the absence of any active inquiry by CMP, that reliance must be considered negligent. In any case, the division of responsibility between the utilities and contractors may be settled elsewhere and should not affect the utilities' rates.

- Q: Why are you certain that CMP could have identified these problems?
- A: Because I spotted these problems in 1979, under circumstances much less favorable than those of CMP's staff.¹³ My initial observations were based on only a couple of cost estimate histories, and I had no access to the utility literature or other utilities, but a pattern of substantial cost overruns

13. The staffs of BHE and MPS were similarly better situated than I was when I observed these phenomena.

- 27 -

quickly became obvious. The calculation of cost ratios, myopia factors, and duration ratios were simple ways of quantifying very important phenomena, requiring no strong assumptions or complex calculations. I can not imagine why any utility with an established power-supply planning process would not have noticed the same problems.

- Q: Is it your opinion that CMP's decision to sign the joint ownership agreement was imprudent?
- A: Not necessarily. It was certainly imprudent for any utility to sign such an agreement and then fail to monitor (and critically assess) developments for most of the next decade, as CMP appears to have done. It is possible that participating in Seabrook in itself, coupled with a commitment to due diligence in the future, may have been a reasonable decision at the time.
- Q: Considering the problems you have described, how could such a commitment be reasonable?
- A: While nuclear power had serious problems, so did the other conventional generation alternatives which were perceived to be available in 1972. Oil prices were expected to rise, although not nearly as much as they actually rose later in the decade. There was considerable uncertainty regarding the extent and cost of future environmental constraints on coal combustion. Several power supply options available today

- 28 -

were not generally considered to be on the table in 1972: Quebec was an inconceivably distant power source and New England hydro potential seemed trivial compared to the perceived need although a very good utility would have foreseen some fo the forces which later moderated growth. Fostering conservation and customer-owned power generation was simply anathema to utilities in the early 1970's: while the economies of scale and technical progress which made load growth beneficial in the 1950's and 1960's (and had then made conservation and cogeneration undesirable) had probably run their course by 1972, this general phenomenon would have been more difficult to identify (and less certain) than the specific problems of nuclear power. The perceived importance of economies of scale had become utility dogma, and it would have required considerable courage and vision for any utility to abandon construction or participation in the large plants then in planning, in favor of smaller alternatives. Thus, it is hard to say that CMP erred in signing the Seabrook Joint Ownership Agreement, or similar agreements for other nuclear plants in the same period, without allowing a certain amount of hindsight to influence our judgement.

Another issue specifically facing the utilities buying into Seabrook was the linkage between the two units at the plant. The first unit may have looked particularly attractive, in

- 29 -

the capacity-short early 1970's.¹⁴ Since utilities could not purchase capacity in one without buying into the other, the risks of Seabrook 2 might have seemed worthwhile.

- Q: What then is the ultimate significance of the state of the nuclear industry in 1972, in terms of the issues in this case?
- A: There are two central points which can be drawn from the facts I laid out. First, as discussed previously, CMP's failure to acknowledge the weakness of the Seabrook cost and schedule estimates can only be attributed to irresponsible and/or incompetent behavior on the part of either CMP or PSNH.¹⁵ Second, even if CMP somehow believed that PSNH's projections were the best available estimates, it should at least have recognized that the projections were subject to tremendous uncertainty. At a minimum, choosing to participate in Seabrook created a responsiblity for CMP to monitor the progress of the project, and of its cost estimates, and to be prepared to react appropriately if the historical trends continued or accelerated. The same can be said, even more emphatically, of PSNH's responsibility as the sponsor of the project.

14. Whether it should have looked attractive or not is another issue.

15. Again, the same considerations may apply to UE&C and Yankee.

- Q: Given the nature of the joint owners' agreement, was there any advantage for any of the joint owners in monitoring Seabrook 2 cost estimates? Did any of the joint owners other than PSNH have any control over the project?
- A: Despite their lack of formal control, it is clear that joint owners can have significant influence over the fate of a nuclear unit. This influence is seen most clearly in the case of Seabrook 2 itself, in the effect of the 1983/84 opposition by United Illuminating, Connecticut Light and Power, Central Maine Power itself, and other utilities. Another visible example is Dayton Power and Light's opposition to the completion of the Zimmer nuclear plant. The public opposition to (or even doubt of) pursuing Unit 2 by one of the Seabrook joint owners might well have led to the cancelation or mothballing of the unit much earlier, and hence saved all the owners millions of dollars.

In particular, intervention in the regulatory proceedings (particularly those of the NRC, the NHPUC, and other state utility regulators) by a joint owner which believed (or suspected) that construction was imposssible, or excessively expensive, would have made it very difficult for those agencies to continue to support the plant. The same could be said for the filing of a lawsuit, even if it eventually proved to be unsuccessful. PSNH presumably would have been

- 31 -

aware of this possibility,¹⁶ and would almost certainly have cooperated with CMP's efforts to review the cost estimates, rather than face a public confrontation. Perhaps most importantly, had CMP been monitoring actively the quality and reliability of the cost and schedule estimates, it might have spared itself the error of buying additional ownership in Seabrook in 1980. Even before that time, CMP had a great deal of power, and even the facts of 1972 should have alerted CMP to the possibility that it would have to exercise that power.

16. If one believes that PSNH really was not aware of the state of the nuclear industry throughout the 1970's, it may be conceivable that it would not have spotted its significant liabilities in the event of a public disagreement with a joint owner. If this were the case, CMP could have pointed out PSNH's vulnerability.

3 - NUCLEAR PROBLEMS IN THE MID-1970's

- Q: You have described the problems of the nuclear industry in the early 1970's. How had the situation changed by the end of 1976?
- A: There were three kinds of important developments in this period. First, all the problems which I described above persisted and expanded. Second, the direct and indirect effects of the first oil price shock started to change the basic environment in which utilities operated. Third, Seabrook actually received its construction permit in July 1976.¹⁷
- Q: Which utilities, in addition to CMP, should particularly have been aware of nuclear power experience between 1972 and 1976?
- A: Both MPS and BHE made commitments to Seabrook in 1977 and officially joined the Seabrook participants in 1978, by buying 1.46% and .37%, respectively, from Northeast Utilities (NU). Both of these utilities should have been aware of the recent history of nuclear projects before buying into

17. That permit was suspended or otherwise under a cloud from late 1976 to August 1978.

Seabrook. (CMP attempted to acquire 2.6% of Seabrook from UI and NU in 1976, but did not renew its offer when the original transfers were terminated.)

- Q: Please describe the continuing problems of the nuclear industry.
- Table 3.1 updates to the end of 1976 the previous analyses A: (Tables 2.1 and 2.2) of cost and schedule slippage in completed nuclear units. By this time, Seabrook 2 had received a construction permit (CP), so the summary statistics are computed from the estimate at the time of the CP, to the actual cost (or completion date). In determining which estimate corresponds to the CP, I used the first post-CP estimate, if there was a new estimate within a year after the CP, and otherwise the last pre-CP estimate.¹⁸ this basis, the average cost ratio¹⁹ is 2.05, the average myopia factor is 22.8%, and the average duration ratio is 1.624. The cost results are not very different than those in the previous analysis, through 1972, but the duration ratio is somewhat worse than the 1972 result. If the Seabrook 2 cost and schedule changed as much during construction as did those of the 49 units in Table 3.1, it would have cost \$2.1

18. If the utility did not find it necessary to release a new estimate for more than a year after the CP, it must have been fairly content with the prior estimate.

19. Turnkey plants are excluded from the cost analysis.

, ".
to \$4.2 billion, and entered service in 3/88.

In Table 3.2, I repeat the analysis of the cost and schedule slippage of nuclear units under construction (see Table 2.4), updated to the end of 1976. This analysis only includes slippage after construction permit receipt: the first estimate is defined as in Table 3.1. If Seabrook 2 experienced throughout its construction the average progress ratio and cost growth rate this group had from CP to 12/76, construction would have required 19 years,²⁰ to sometime near the end of the century, and the unit would have cost \$18 billion.²¹ These results indicate that Seabrook 2 could not both have repeated this experience <u>and</u> have been completed. Even with much improvement over the historical average, Seabrook 2 would have been a disaster.

- Q: Do you make any particular assumptions in applying the historical experience to Seabroook 2?
- A: Yes. Projecting the historical experience would have been appropriate in 1976 if one had assumed that the situation in 1976 and into the future was as unsettled as the previous decade, and that the Seabrook 2 estimate was consistent with

20. This is PSNH's estimate of 6.92 years, divided by the progress ratio of 36.3%.

21. The average cost growth rate of 16.4%, over 19 years, would increase the price by a factor of almost 18 times.

- 35 -

utility practice. I believe that a reading of the utility press from that period supports the first assumption (which is not subject to any rigorous test in any case). The second assumption is more empirical. Table 3.3 lists the other second units with CP's or Limited Work Authorizations (LWA's), but still less than 10% complete, as of 12/76, from Nuclear News (2/77). The average of these 33 plants was 2.0% complete (compared to Seabrook 2 at 1.0%), and was scheduled for completion in 11/82. Second units were scheduled for somewhat later operation; thus, the schedule estimate for Seabrook 2 was consistent with industry practice.

Q: Was there any more New England experience by 1976?

- A: Yes. Millstone 2 entered service in December 1975. Table 3.4 displays the cost estimate history of Millstone 2, which was by far the most expensive nuclear unit in the region. While none of the Maine utilties has any direct interest in Millstone 2, it would be particularly difficult for any New England utility not to be aware of the history of this relatively local unit.
- Q: Were there any particular reasons for other New England utilities to take note of the cost and schedule overruns for Millstone 2?
- A: Yes. Previous capacity additions were almost always welcome for reliability purposes, and most additions also reduced

- 36 -

costs when they entered service or soon thereafter. Public agencies were primarily concerned with the adequacy of power supply, and the only capacity problem was a potential shortage. The situation was rather different for Millstone 2, which caused considerable consternation when it was completed. The unit was unnecessary and had expensive excess capacity at the time it entered service. As I will discuss below, the radical reduction in load growth following the oil price increases of 1973-74 had left New England utilities (including NU, the sole owner of Millstone 2) with enormous reserve margins. The construction cost of the plant was so high that even post-embargo oil prices did not make it cost-effective in the short run, and there was initially concern that it might not be cheaper than oil over its life as a whole.²² The Massachusetts Attorney General opposed (unsuccessfully) the inclusion of Millstone 2 in the rate base of Western Massachusetts Electric Company (WMECo) on the grounds that the unit's capacity was surplus to the utility's needs.

Q: Does the size of MPS, BHE, and their professional staffs have any bearing on their responsibility to understand, review, or monitor the Seabrook cost projections?

A: Not in any way relevant to this case. It is clear that both

22. This problem was solved by the Iranian revolution in 1979.

utilities had access to enough information to raise serious questions about the quality of the cost esitmates it was receiving from PSNH. There is no evidence to suggest that either MPS or BHE then attempted to set up any sort of monitoring process, either individually, jointly, or in conjunction with other small utilities, to assure that it would be prepared to respond if the historic pattern continued.

- Q: What sort of monitoring might MPS or BHE have conducted?
- A: While I would not want to prescribe any particular approach, they might have collected some of the articles I have quoted, identified and confirmed the trends and problems addressed in those articles, and then pressed PSNH for some explanation as to how the Seabrook estimates corrected for and incorporated those problems. They might also have talked directly to some of the analysts with concerns about nuclear costs, both inside and outside the industry.
- Q: In the previous section, you contrasted the resources available to you when you first identifed the patterns in cost estimates to the resources available to CMP in 1972. How do the resources of the MPS and BHE Staffs in the mid-1970's compare to yours in the late 1970's?
- A: While these utilities are much smaller than CMP, their opportunities for addressing these issues were still much

- 38 -

greater than mine.

1

- Q: Did the electric utility literature continue to note the persistence of these problems?
- A: Yes. The Senior Editor of **Power Engineering** magazine wrote that

The nuclear power industry continues to miss schedules, and more slippage appears to be ahead. . Based on past performance and anticipating new impediments, it seems unlikely that [the current construction] target will be met.

Low [construction] time estimates have been characteristic of both the AEC and the utility forecasts. Part has been due to tight targeting and part to external causes. Both are understandable in moderation. It taxes reason, however, to explain all the announcements of new plants in the past three years that estimated commercial operation in six to eight years .

The great bulk of recently announced plants are now planned for 8 to 10 years, and considerable additional slippage lies ahead for these units.

The AEC still is changing the important ground rules, . . . and the nuclear community seems to profit little from some pretty plain and important lessons of recent history. . .

More likely, of course, the schedule [of nuclear additions in 1979-81] will not hold. . . (Olds 1973)

Seabrook 2 would have been one of the "new plants in the past three years that estimated commercial operation in six to eight years", with more aggressive schedules than "The great bulk of recently announced plants . . . now planned for 8 to 10 years," for which "considerable additional slippage lies ahead". The next year, Olds headlined his review "Power Plant Capital Costs Going Out of Sight" (Olds 1974). In that article, he presented extensive data on nuclear cost estimates, and subsequent revisions, for the period 1965-74, and computed that estimates had been rising 26% annually since 1970:

From the mid-1960's on, power plant capital costs have risen faster than estimators can get their numbers changed. In spite of intensive study by many experts, the skyrocket performance of plant costs has defied complete analysis.

It is obvious . . . that as plants get closer to their completion dates, their reported costs tend to jump. It may be expected that the 1967-68 averages [for plants ordered in those years] will increase still further.

Olds also warned that

In spite of the steep increase in estimated costs, these probably will fall far short of the actual completed plant costs unless there is a sharp break in the influences that are forcing costs up so dramatically.

In general, the 26% increase rate since 1970 reflects four factors: (1) inflation in cost of labor, material, services and money; (2) increase in scope, or material content of plants. . . ; (3) recognition that base line estimates in 1965-69 were far too low; and (4) belated recognition that slippage was of major proportions. . .

The influence of the regulatory arm [of the AEC] on schedules still is totally unpredictable. The branch has kept a moving target before the utilities for a long time while proclaiming standardization and schedule shortening. As of May, the record shows that the 54 plants holding construction permits have been slipping their fuel loading dates at the rate of 0.37 months per month.

Another year later, the same author reviewed the history of

nuclear plant schedules and concluded

. . . schedule slippage has been going on for a decade. . . A study of the 10 years of changes in nuclear plant status thus discloses a steady increase in estimated time to complete plants, and that these estimates have been about two years too optimistic all along . . Slippage became worrisome in 1969 when, in just that year, an average of one plant in six slipped a year. . . The average slippage per plant, as announced, generally increased steadily through 1973. Then in 1974, 201 net plant years of slippage were announced, nearly half of the 10-year total for the 226 plants. (Olds 1975)

Things did not improve dramatically the next year, either

While the slippage in the nuclear program in 1975 was less than it was in 1974, it was not comfortably less, and was larger than for any other year except 1974. Setbacks were spread about evenly over the whole year, and were most severe for plants that had been ordered in the 1971-74 years.

Costs continue to grow at a rapid rate, and the postponed plants are going to be much higher in cost as each year passes.

[In 1970-75,] AEC's regulatory people kept promising shorter licensing, but kept taking longer. In addition, a torrent of guides and procedural changes forced additional delays on the industry. It took time to digest the changes, to retrofit the engineering, the procedures, and to retrofit in the field. The moving target exercise was a tragedy. .

These years thus were particularly difficult ones for the industry. Accurate scheduling was impossible, and costs sped upward without any possibility of control by the industry. . .

When the AEC was dissolved, an important nuclear advocate was lost. (Olds 1976)

Some other examples from the nuclear literature of this period would include:

[T]he trend of nuclear plant costs [for plants ordered in the 1960's] was more or less correctly anticipated, but the absolute magnitude seems to have been badly misestimated. For example, in 1968 the reactors were expected to cost only \$180/kw. Our actual estimate of cost of reactors ordered . . [both in that year is about \$430/kw. constant] 1973 dollars; i.e., there has been a systematic discrepancy of more than a factor of 2. . . [T] his difference between expected and actual costs has not been narrowing with time. Indeed it has been growing. . . [We] predict, taking the more conservative of the two [regression] estimates, that reactor cost will continue to increase at an average rate of \$34 [constant 1973] dollars] per year, if nothing happens to change the relative impact of the various independent variables. (Bupp, <u>et al.</u>, 1974)

Florida Power Corporation has announced it has abandoned its plans to construct the unnamed two-unit nuclear station it had scheduled for operation in the mid-1980's. . . "We believe nuclear power still holds the promise of being the long-range answer to adequate electric supplies as well as a means of achieving national energy independence." FPC president Andrew Hines said . "However, we feel it is not in our customers' . . best interest at this time to proceed with our previously announced plans. There is too much governmental uncertainty as well as an almost unknown cost factor for construction for us to plunge ahead into the morass." In 1973, • • • the projected cost of the facility was \$1.4 billion. More recent estimates had set the cost of construction as \$2.6 billion, and the utility said there was strong indication that escalation would continue in the years ahead. (Nuclear News 1976)

All of us know that power generation costs and prices have run rampant since 1969, but many may not realize how much they have changed. . . Projected [nuclear power unit investment] costs . . . have increased about four times since early 1969, an average of 21% per year compounded. . In 1969, it was assumed that a nuclear unit could be placed in service about six years after authorization. Today the time span between authorization and the expected date of commercial serivce is slightly over nine years. (Brandfon 1976) For nuclear plants, . . . both the derived curve and the specific plant data suggest that the error in cost prediction was increasing rapidly through the latter half of the 1960's [from 37% overruns for plants completed in 1971 to 115% for plants completed in 1975], largely because plants begun in the mid-to-late sixties were delayed and made more costly by imposition of unanticipated environmental and safety-related requirements . . . ; unexpected inflation also played a significant role. (Blake, <u>et al.</u>, 1976)

[W]ere it not for these [recent sharp increases in fuel costs], the long-run economic viability of nuclear reactors as a competitive generating alternative would indeed be questionable. . . All things considered, [and even assuming nuclear costs of only \$883/kw in 1985, compared to PSNH's estimate of \$1007/kw for Seabrook 2 in 1983] it appears that purely on economic grounds and ignoring capital shortage problems resulting from state regulation of electricity rates, the future of the U.S. nuclear reactor industry is less bright than recent government forecasts indicate. (Joskow and Baughman 1976)

- Q: Did the series of **Electrical World** annual reviews continue in this period?
- A: Yes. Nuclear surveys were published in October of 1973 through 1975. The 1976 survey was published in January of 1977. The prose portions of these documents are worth reading in their entirety, to establish the pattern of continuing concern, optimism, and dashed hopes. Some highlights include:

1973: "Nuclear Survey: A Record Year"

Schedule slippage among previously committed plants is a continuing problem. Of the units committed before Sept. 15, 1972, but not yet in commercial

Reactor orders soar but lead times slip.

service, 63 units were reported this year with no schedule change, 45 had been set back one year, 6 two years, and 2 three years.

1974: "Nuclear Survey: Orders and Cancellations"

Mixed bag of statistics shows commitments to new units running about as predicted, but mid-year inflationary forces caused widespread cancellations and delays in construction programs.

Unfortunately, these figures do not openly reveal the crisis in the nuclear power industry that is being caused by spiraling inflation; they appear, instead, to herald a healthy industrial posture.

The most important truths in the industry today are not to be found in growth-rate statistics, but in reports of cancellations, indefinite postponements, and scheduled construction stretchouts. . .

As utilities have moved to cover financial situations by paring construction budgets, changes in nuclear schedules were occurring almost daily during the late summer.

When the tabulation closed, 75 units (or about 36% of the 206 listed) had new completion dates that were at least one year later than originally planned. A few of these are plants under construction where construction has lagged schedule, but the vast majority are utility-ordered stretchouts and average about 2 years for each delayed unit.

Last year, AEC licensing delays and intervention by small groups of diehards with talented lawyers represented the major challenges to nuclear power. This year, the old problems have not gone away, but the major contention comes from pervasive financial conditions that are not exclusively nuclear.

1975: "Nuclear Survey: Cancellations and Delays"

Industry falters as uncertainties mount in the areas of financial commitments, load-growth demands, regulatory delays, fuel-cycle inadequacies, and unpredictable social and

political hindrances.

The year covered by this report (Sept. 15, 1974 to Sept. 15, 1975) ended on a downward trend. Two major stations were indefinitely postponed late in the period, and this wiped out slight gains that had been posted earlier. The net result: a narrow loss . .

Uncertainty is now the name of the game as utility executives scramble to hold on to what they see in their load-growth predictions, balanced against what they can afford.

Soaring costs have been charged with forcing seven major units off the schedules this year. . .

Utility executives are well aware that delays are going to be costly; nevertheless, within the period covered by this report, 84 units (90,048 Mw, or 72% of all capacity scheduled to go on line after 1975) has been delayed for periods ranging from one to seven years.

1977: "Nuclear Survey: Market Still Depressed"

About 67,000 Mw of nuclear capacity were deferred in 1975 and at least 40,000 Mw in 1976. This means that almost all future nuclear additions have been rescheduled.

Above all, potential reactor buyers now want assurance from the government that, once they have approved designs and construction permits, they can proceed with assurance that their nuclear plants will be licensed and permitted to operate effectively.

Based on NRC's performance, the utilities are widely convinced that they cannot manage their own economic destinies in such an uncertain environment; therefore, they are being scared away from nuclear power.

- Q: Did the series of FPC reviews continue?
- A: Yes. The Steam Plant Book observed

In the 1965-1968 period, the average capital cost of nuclear units ordered was about \$150/kWe.

.

However, it was estimated that the average capital cost of nuclear units ordered in 1972 would be about \$429/kWe by the time that units come on-line; an increase attributable to such factors as inadequate quality control in manufacturing and in field construction, labor problems, added environmental equipment and high rates of escalation. For 1973 the comparable figure was estimated to be slightly higher at about \$449/kWe.

Increasing national concern for the environment continues to affect nuclear projects. Following the 1971 Calvert Cliffs decision, the Atomic Energy Commission issued a revised statement of policy and amended its regulations to broaden the scope of environmental issues it will consider in licensing proceedings. .

Delays of two to four years from scheduled commercial operation dates are being experienced for many nuclear units, due to late delivery of equipment by manufacturers; faulty installation of equipment; strikes by manufacturer's employees, construction employees, or electric system employees; inclement weather; as well as increasingly detailed AEC reviews, and the inexperience of many utilities and their architect engineers with nuclear power. These and other difficulties have prompted some utilities to reassess their nuclear plans. Although many problems confront the utilities in their nuclear planning, prompting some utilities to reassess their nuclear plants, they are proceeding with increasing emphasis on nuclear plant additions to their system generation mix. (1972, pages XIV -XV)

In the 1969-1973 period, the average capital cost of nuclear units ordered was approximately \$427/KWe. However, since 1970 nuclear plant construction costs have been escalating at more than 15 percent a year. The latest updated (March 1975) average capital cost of nuclear units ordered in 1973 was projected to be about \$608/KWe by the time the units are completed and placed in commercial operation. This increasing cost trend of nuclear units is attributable to such factors as increased design complexity, inadequate quality control in manufacturing and in field construction, shortage of skilled labor, added environmental equipment to meet newly established environmental and safety standards, and escalating costs of equipment, materials and wages. For 1974 the comparable figure was estimated to be slightly higher at about \$627/KWe. With projected production costs of about 5.0 mills/kWh for these units, the total cost of electricity generation from nuclear plants ordered in 1974 will be in the neighborhood of 20-22 mills/kWh. The average capital cost for nuclear units in operation on December 31, 1973 was \$204/KWe.

Increasing national concern for the environment continues to affect nuclear projects. Following the 1971 Calvert Cliffs decision, the AEC issued a revised statement of policy and amended its regulations to broaden the scope of environmental issues it will consider in licensing proceedings. The broadened environmental protection requirements, mandated by Federal legislation, increased the length of time required to process environmental impact statements. License applications on which licensing action had been taken had to be reeexamined and a more extensive environmental review performed. Increasing requirements for environmental protection and plant safety features contributed to significant delays in scheduled lead times of many nuclear units. However, the principal cause is attributable to delays in construction, i.e., late delivery of equipment by manufacturers; faulty installation of equipment; strikes by manufacturer's employees, construction employees, or electric system employees; inclement weather; increasingly detailed AEC reviews, and the inexperience of many utilities and their architect engineers with nuclear power. Although many problems confront the utilities in their nuclear planning, prompting some utilities to reassess their nuclear plans, they are proceeding with increasing emphasis on nuclear plant additions to their system generation mix. (1973, pages XV -XVI)

Projected nuclear plant investment costs which have been escalating at more than 15 percent per year since 1970 continued at that pace during 1974. The latest updated (March 1976) average capital cost of nuclear units ordered in 1974 was projected to be about \$690/kwe when the units are completed and placed in commmercial operation. This increasing cost trend of nuclear units is attributable to such factors as increased design complexity, inadequate quality control in manufacturing and in field construction, shortage of skilled labor, added environmental equipment to meet newly established

- 47 -

more stringent environmental and safety standards, and escalating costs of equipment, materials and wages. For 1975 the comparable figure was estimated to be slightly higher at about \$694/KWe. (1974, pages XV - XVI)

The 1974 report also repeated the second paragraph I quoted from the 1973 report, verbatim.

- Q: Taken as a whole, were these observations any different from those you described in the previous section?
- A: Yes, in two respects. First, the general tenor of the comments moved perceptibly over the years, from an early sense of annoyance and puzzlement with these cost and schedule problems, to a later sense of deeper concern. Second, the continuing assurances that last year was the end of the trend, and that <u>next</u> year would see the industry turn around, were beginning to wear a little thin. The initial observations emphasized that the problems were a bit more complex than the industry had thought, but now they were largely under control and the "learning curve" could take over, leading the industry to faster, cheaper construction, and better cost estimation. By the mid-1970's, the regular reader of the utility magazines would have been through several cycles of bad news, followed by promises of better results in the short term, followed by more delays and overruns, and by some familiar promises.²³ In addition, the

23. Many authors also continued to express suprise at the size of the increases, even after the pattern had persisted for a

learning curve seemed to have largely disappeared from the discussion: the problem for the foreseeable future was to stop the slippage.

- Q: What new problems had arisen since 1972?
- A: The oil embargo and subsequent dramatic rise in oil prices had several important effects. On the one hand, it improved the relative economics of any technology which promised to reduce oil consumption. On the other hand, it greatly increased the cost of electricity, particularly in New England; reduced load growth to virtually unprecedented levels (often to negative growth); encouraged conservation actions and the development of conservation technologies; increased inflation; and greatly increased the financial stress on utilities.
- Q: What was the effect of reduced load growth on nuclear construction?
- A: The changes in most utility load forecasts (Those of CMP, NEPOOL and PSNH are illustrated in Figures 1.1, 1.2, and 1.3., and CMP, MPS and BHE forecasts are discussed further in Section 9.) had two effects. First, the reduced need for power plants made it harder to justify building any new

decade. Also, even in the middle of a recitation of the industry's woes, many authors paused to express their faith in the need for nuclear power, and in the eventual recovery of the industry.

- 49 -

generation, including nuclear plants, and raised the possibility that new units might not be needed for long periods after they entered service. Second, lower sales resulted in reduced internal generation of funds, which compounded the financial stress caused by the higher oil prices themselves.

- Q: How did conservation affect nuclear power?
- A: The reduction in load growth was largely due to conservation, of course: this demonstrated that continual increases in electricity consumption were not inevitable. In particular, it became clear that conservation was an alternative to new power supplies, and that conservation could be encouraged by higher prices and by organized regulatory and incentive programs. For the most part, those programs did not get off the ground until the late 1970's, and there was considerable hope in the utility industry in 1976 (and even later) that the conservation effects of the last few years would soon disappear, overtaken by a wave of "pent-up demand".
- Q: How did the first oil price shock induce financial stress for utilities constructing nuclear power plants?
- A: As I noted above, reduced load growth resulted in lower sales and lower earnings than the utilities would have expected. At the same time, the higher cost of oil, and subsequent inflation throughout the economy, greatly increased the

utilities' expenses. The pinch between rising costs and falling sales expectations limited the ability of many utilities to finance the construction programs they had planned in more affluent years. In the next section, I discuss how this problem caught up with PSNH, UI, and NU in the 1977-78 period, but both UI and NU were trying to trim their construction programs by 1976; Section 8 considers financial issues in more detail.

- Q: What other changes occurred in the mid-1970's other than those related to the increase in oil prices?
- A: The March 1975 cable fire at the Brown's Ferry nuclear power plant, as the most serious accident to that time at a commercial light water reactor, seems to have been a sort of watershed for the newly formed NRC in two respects. First, it alerted the agency to the possibility that significant safety problems could slip past its initial screening, and thus be present in units under construction or even in operation. Second, it must have driven home the point that those problems would not disappear if the NRC ignored them; a major design flaw could have disastrous consequences for the credibility of the agency and the industry which it was charged with regulating, however gently. Thus, nuclear safety regulation was bound to intensify, rather than relax, despite the (probably correct) perception of the industry that regulation was killing it and despite all political

representations to the contrary.

• .

4 - FINANCIAL CRUNCH: 1977 AND 1978

- Q: Did the situation of the nuclear industry, the Seabrook project, and Unit 2 in particular, improve in the first two years following Seabrook's receipt of a construction permit?
- A: No. Cost escalation and schedule slippage continued nationwide, Seabrook's construction was interrupted by unresolved environmental issues, and some of the major owners reached the limits of their ability to finance the plant.
- Q: What was the national experience with cost overruns and schedule slippage in 1977 and 1978?
- A: Table 4.1 continues the analysis of Table 3.1, for those plants which entered commercial operation in 1977 and 1978. On the whole, these two years were even worse for cost overruns by completed plants than was the previous decade. Applying the experience of these 10 units to the current estimate for Seabrook 2 (which was only 2.8% complete) would produce a corrected cost estimate of \$3.5 6.2 billion, and a commercial operation date of December 1991. Including the experience of the units completed by 1976 would moderate this somewhat, producing an estimated completion date of 6/89 and a cost estimate of \$2.8 4.9 billion. These costs are equivalent to increases of 115-375% over PSNH's \$1.3 billion

- 53 -

estimate of January 1979, as contrasted with the 20-40% cost increases CMP contemplated in its analyses in MPUC U3238. Clearly, Seabrook 2 would have been a major nuclear success story if its cost had increased only 20-40% more.

Table 4.2 repeats the slippage calculations of Table 3.2, both for the continuing (1976 to 1978) slippage of the units in Table 3.2 which were still not finished in 1978, and for the total slippage to 1978 of some 26 additional units which were not included in Table 3.2 because they received construction permits too late, or because they had no new cost or schedule estimates by the end of 1976. On the average, the cost estimate for this group of units was increasing at 17.9% annually, and they were making only 41.4% of the scheduled progress towards completion: for each year that went by, they were getting only 5 months closer to completion. If Seabrook 2 progressed as slowly, and if its cost escalated as rapidly as the average of this group, then it would require 14.7 more years (to 9/93) and would cost \$14.7 billion to complete, again indicating that it could not repeat this average experience and be completed.

Table 4.3 compares the schedule projection for Seabrook 2 to that of other units which held construction permits, and which were listed as less than 10% complete in December

- 54 -

1978. The average of these plants was 3.6% complete (compared to Seabrook 2 at 2.0%), and was scheduled for completion in 12/85. Second units (averaging 3.4% complete) were scheduled for somewhat later operation, with an average 2/86 COD. Thus, the schedule estimate for Seabrook 2 was somewhat more optimistic than average, but was not out of line with a few of the other estimates, and extrapolation of historical experience to Seabrook 2 was only mildly optimistic.

- Q: Did observers within the nuclear industry continue to report the problems you described in previous sections?
- A: Yes. Again, the A/E's identified the past pattern, although they were loath to admit that their current efforts were subject to the same problems:

1

Increases in power plant costs between estimating dates of 1969 and 1978 can be attributed to inflation and to statutory and regulatory requirements. About 22 percent of the increase is due to inflation and 78 percent due [sic] to statutory and regulatory changes.

Over a twelve-year period in operating dates (1976-1988) estimated power plant investment requirements have increased by a factor of approximately seven.

[These estimates] do not include any sums specifically intended to cover future, and presently unknown, additional safety or environmental requirements. However, in view of our past experience with the continual ratcheting of environmental and safety requirements and economic and political uncertainties, they do include contingency items of about . . . 17 percent for a nuclear plant. (Bennett and Kettler 1978)

- 55 -

. . . Harold E. Vann, vice president-power, United Engineers & Constructors [said] "The lo-year schedule for nuclear plants is not compatible with the time period betweeen investment made and revenues received . . The high investment cost also complicated this problem. It is commonly known in the investment community that announcement of expansion plans adversely affects the price of a utility's equity. (Nuclear Industry 1977a)

Ebasco Services Incorporated is projecting that "there will be few domestic nuclear power plants announced by utilities in 1977. This opinion is based on the conditional nature of new construction permits, and [fuel cycle concerns.]" (ibid.)

Bechtel said "it anticipates regulatory agencies will continue to change licensing criteria and it therefore seems unlikely that nuclear units will become standardized." (ibid.)

Ebasco especially wanted to note its concern with the indicated trend of review and backfitting of operating plants to meet current guides. "We believe," it said, "that a broad policy of requiring retrofit without a demonstrated need, or benefit to the public commensurate with cost, is detrimental to the public interest at a time when public concern for energy independence should be answered with an accelerated commitment to nuclear power." (ibid.)

Brown & Root's senior vice president, M. M. Finch, sees prospects for shortening [nuclear] power plant construction schedules as "unlikely." Expecting costs and scheduling to escalate in the future as they have in the past, Finch believes that this will change only with the recognition of the absolute necessity of the nuclear option. "If we are to have a viable nuclear industry," Finch warns, " there must be an absolute commitment to resolving the many significant items that have been plaguing the nuclear industry for so long." (Meanwhile, just <u>maintaining</u> construction schedules is a more realistic hope, Finch says, because the "barriers" to shortening schedules are formidable.) (Jacobson 1977; parentheses and emphasis in original)

From Burns and Roe came the observations that:

It is clear that nuclear power is in deep trouble. . In the first eight months of 1979 alone, 67 nuclear plants were either deferred or cancelled, and the Nuclear Regulatory Commission has imposed a temporary moratorium on the licensing of nuclear power plants.

The authors continued by explaining why nuclear costs are so much less certain than coal costs:

The nuclear plant cost [projection] has a wider range [than the coal plant estimate] because it is felt that there is greater uncertainty in estimating future costs of nuclear plants than there is with coal plants.

These cost projections . . . are based on . . . current known regulatory requirements. It is important to keep this in mind because actual . . regulatory requirements experienced over the life of a project are likely to be different. .

Today's estimates for the 1992 plants are more than 10 times as large as the estimates that were made in 1969 for nuclear units scheduled to start up in 1976. Although the projected costs of nuclear and coal costs are very high, the nation's options are limited, at least through the end of the century.

This study of available cost data for U.S. power plants has indicated that costs are likely to increase significantly for all types of plants over the next several years, at least. The base cost numbers have been established, and major reasons for cost increase have been identified. From this point, it can be said that the final actual costs of nuclear plants now underway are expected to be 3 to 4 times as high as the original estimates.

In 1974 and 1975, . . . less than 3 million engineering man-hours were required for a single unit plant. Today, the figure is about 4.5 million man-hours for the single unit plant. The earlier studies showed 11-12 craft man-hours per kilowatt of capacity in the single unit plant; today, the craft man-hours exceed 15 per kilowatt. .

As a final point, it was noted during the course of this detailed cost study that the available actual cost data often do not reflect the ultimate total capital costs. This is true to the extent that costs are not updated to include subsequent expenditures for compliance with new regulations. (Budwani 1980)

F. C. Olds commented extensively on the growth in safety regulation:

[H]ow safe is safe enough [for nuclear plants]? This question has been asked but never answered in terms of a limit to be placed on NRC requirements. Consequently, as long as a reviewer can conceive of a way to reduce pollution or risk, he is likely to require it. .

[Adding 1975 and 1976 to the regulatory picture] can best be described as ratcheting gone wild. During 1976, an average of three new requirements having significant impact on NSSS design were issued by the NRC every month. Obviously this situation has a severe adverse impact; imagine the picture by the end of the 12-year period now needed to get a plant on line.

Where all this ratcheting will end is anybody's guess. The primary cause is the open-ended [Atomic Energy] Act that more or less directs reviewers to ratchet, and creates an ungovernable situation.

Replication . . . met with some success until a regulatory ratchet was applied to the process. . . [A]n expensive change was required of [a duplicate] plant. In turn, this was whipsawed back on the original plant, which now was under construction. (Olds 1977)

Whether or not one accepts Olds' characterization of the need for this level of safety regulation, his description of its effects (compounded by unrealistic utility attitudes) appears to be accurate. The next year, Olds (1978) reached his most graphic in describing the problems of the industry. The lead-in included the observations that starting in 1974, announcements of setbacks in nuclear plant schedules began in earnest. Most of the apparent delays, however, reflected the fact that many plants at that time carried unrealistic completion dates and had no chance of meeting them.

This has continued throughout 1976-77, but with an additional feature. Real lead time has continued to increase at about one year per year; hence, the published schedules still are running behind. Plant costs now are time-dominated and increase as fast as lead time...

The body of the article went on to remark:

Table 1 shows what has happened to the schedules of the 66 nuclear units that had gone into commercial operation by the end of 1977, and gives an estimate of probable completions in 1978. From the data in this table, it will be shown that during the four years, 1974-77, lead time for these units from NSSS order to commercial oepration was increasing by nearly one year per year. Subsequent tables will look at units scheduled for later years . . . [In 1970-1972] There were some hints of future trouble, but there were always the promises that the course for nuclear plants would be smoothed out and shortened. The industry could not be criticized severely for having too much optimism at that time. .

By 1973, however, hardly anyone should have hoped for lead times for new bookings as low as nine years. Beyond 1973, there were hopes for reduced times via standardization of plant designs, multiple orders for identical units, standardized licensing reviews, pre-licensed shop-fabricated units, and other good things promised by Washington. Largely, these hopes for time reductions have been thwarted thus far.

Florida Power and Light became a bit more colorful in its description of the problems which resulted in the cancelation of the South Dade units: . . . Robert Uhrig, vice president for nuclear and general engineering, said he didn't see how any utility "that has to defend its actions to a public service commission could justify a business decision to 'go nuclear' in the present environment". . . "The nuclear licensing process has been destabilized to the point where sound business decisions cannot be exercised with respect to nuclear facilities. Sound business is dependent upon predictable time schedules and costs, and neither is present in today's era of uncertainty." (Nuclear Industry 1977b)

Electrical World continued its increasingly gloomy reviews:

This year's nuclear survey . . .tends to reinforce the gloom of the "big four" manufacturers that was expressed last year in both trade journals and the popular press. . .

Several dates for scheduled commercial operation of plants have been postponed - some indefinitely - and there have also been cancellations. . .

FPL announced in mid-1977 that it would not commit itself to any future nuclear plants as of that time. The utility cited regulatory uncertainties at both state and federal levels as its principal reason.

The Omaha Public Power District told **Electrical World** that its overriding reasons for canceling Ft. Calhoun 2 were (1) excessively high estimated cost per installed kw, (2) lower-than-expected load growth projected for its service area, and (3) a more than \$200-million interest charge on capital before commercial operation would begin.

The number of "indefinites" [sic] has dropped over the past year from nine to seven, with an accompanying "decrease" of almost 2,000 Mw in generating capacity. But this encouraging portent could be canceled when one realizes that the chance of all - or any - of the "indefinites" being built is slim indeed. (Electrical World, "1978 Nuclear Plant Survey")

Q: Did the Federal Power Commission surveys continue?

A: Yes. The language of the prose summaries in the Steam Plant

Book, now published by the Federal Energy Regulatory Commission (FERC), was becoming quite repetitive:

≤ - 1 = 2

ţ

Projected nuclear plant investment costs which have been trending upward since 1970 increased again in 1975. The latest updated (January 1977) average capital cost of nuclear units ordered in 1975 was projected to be about \$766/KWe by the time the units are completed and placed in commercial operation. This increasing cost trend of nuclear units is attributable to such factors as increased design complexity, inadequate quality control in manufacturing and in field construction, shortage of skilled labor, added environmental equipment to meet newly established more stringent environmental and safety standards, and escalating costs of equipment, materials and wages. For units ordered in 1976 the comparable figure was estimated to be about \$797/KWe. (1975, pages XIII - XIV; published 1/78)

Projected nuclear plant investment costs which have been trending upward since 1970 increased again in 1977. The latest updated (January 1978) average capital cost of nuclear units ordered in 1977 was projected to be about \$829/KWe by the time the units are completed and placed in commercial operation. This increasing cost trend of nuclear units is attributable to such factors as increased design complexity, inadequate quality control in manufacturing and in field construction, shortage of skilled labor, added environmental equipment to meet newly established more stringent environmental and safety standards, and escalating costs of equipment, materials and wages. (1977, page XIII; published 12/78)

The language of the 1976 report was identical to that in the 1975 report, which was issued after the 1976 data was available.

- Q: Are you aware of any detailed assessments by nuclear utilities of the problems they faced in this period?
- A: Yes. Detroit Edison has prepared a report on the

construction of its Fermi 2 nuclear power plant (Detroit Edison 1983), which presents an overview of nuclear regulation in the 1970's. Chapter 10 of that report, entitled "1978: Nuclear Design Changes", includes the following observations, written in the present tense:

For Fermi 2 and other nuclear plants in construction, numerous additional government and industry standards leading to changes in reactor design, quality assurance practices and new equipment have a drastic effect on cost. Regulations for nuclear plants grow to 784 in 1978 from 277 in 1975. As a result, the real cost to construct nuclear power plants in the United States increases by an alarming 142 percent from the end of 1971 to the end of 1978. During this time, Fermi 2's construction costs increase nearly 150 percent in real dollars. This escalation occurs even after removing inflation in the costs of standard construction inputs--labor, materials, and equipment.

i.

Nuclear design changes, in particular, are characterized by "ripple effects" that carry beyond the immediate component or system being altered. The result is that the total impact on cost is inevitably larger than the sum of the parts. Moreover, many of the changes at Fermi 2 and other nuclear plants are mandated during construction, as new safety rules emerge. This "ratcheting" of regulations during construction greatly complicates the design and construction efforts.

Fermi 2, in fact, is being built in an "environment of constant change" that makes the control or even estimation of costs extremely difficult. The result is that the construction process falls prey to logistical problems that magnify the direct impacts of increased standards. Construction contracts must be let on a "cost-plus fixed-fee" basis, backfits during construction are common, and this often means construction workers cannot be efficiently deployed and labor productivity suffers. These problems would continue throughout the duration of the project.

Cost-plus fixed-fee contracts become unavoidable at Fermi 2. Although some construction contracts

provide for a fixed price - usually tied to an agreed upon inflation index - such arrangements are not feasible when the scope of the work is subject to continuing significant changes. . .

Changes in quality-assurance regulations beginning in 1970 have a severe affect on Fermi 2's cost and schedule. It is truly a balancing act to control costs and, at the same time, ensure that the design is reliable, safe and meets licensing requirements. Increased engineering costs are the smallest part of the impact resulting from compliance with the new quality-assurance regulations.

As quality-assurance standards become more complex and the growth of regulations causes design changes in the mid-1970's, the impact on Fermi 2 is far-reaching, especially when construction is in progress. Previously purchased material must be replaced, usually at higher prices. Already completed construction work is torn down and reassembled according to new specifications. Valuable time is lost while construction crews wait for new equipment and materials to be delivered.

Another result of design and quality-assurance changes is the negative impact they sometimes have on labor productivity. Some construction workers lose motivation to do good work if they become frustrated by design changes that cause constant retrofitting of already completed tasks.

The Atomic Industrial Forum (AIF) published a study (Perl 1978) by National Economic Research Associates (NERA) which found, among other things, that nuclear plant costs were increasing at an annual rate of 10% above general inflation. NERA concluded that nuclear power would be cheaper than coal, but only after <u>assuming</u> that the escalation in nuclear costs would stop abruptly. The study recognized that its "estimates are highly uncertain and hinge upon a number of speculative assumptions" and invited its readers to "substitute your judgement for" NERA's. Indeed, NERA

- 63 -

acknowledged that "If the historic pattern continues and if the cost of coal facilities escalates at a lower rate than nuclear, eventually nuclear will become an uneconomic technology." Many of the results of the NERA study indicated that the nuclear industry was in grave difficulty in 1978, and could only be saved by dramatic improvements compared to past performance.

- Q: Did the interest in organized conservation programs as alternatives to conventional energy sources produce tangible results in this time period?
- A: Some significant programs started up in this period. Examples would include the Federal appliance efficiency standards, higher thermal integrity standards in new building codes, and California's efforts in governmental and utilitysponsored conservation programs. These efforts indicated that it was possible to foster conservation, and establish energy efficiency as a power supply option.
- Q: How did regulatory scrutiny affect nuclear power?

2

A: State regulators started to inquire as to the need for the construction programs; the protection of the programs was frequently presented by the utilities as a major reason for rate relief. This scrutiny took many forms. In California, for example, the Sundesert nuclear plant was subjected to lengthy state hearings which led to its rejection and

- 64 -

cancelation in 1978. The Wisconsin PSC undertook similar reviews of the need for planned facilities in that state, and concluded that further nuclear investments were inappropriate, which finally resulted in the cancelation of three nuclear units in that state.²⁴ More careful regulatory oversight was clearly emerging by 1978.

- Q: Did Seabrook experience many of the problems which plagued the industry in this period?
- A: Yes. As shown in Table 1.1, the Seabrook cost estimate increased twice between the end of 1976 and the beginning of 1979, for a total increase of 29.5%, or 13.2% annually. Meanwhile, the in-service dates for the two units had slipped by an average of 16 months in a period of 25 months, and the scheduled COD for Unit 2 remained over 6 years in the future.²⁵ As demonstrated by Figures 1.2 and 1.3, the load forecasts for the lead participant and for the region were falling rapidly, slightly eroding the economic value of the plant, and more significantly eroding the financial strength of the owners and potential owners.

25. BHE

^{24.} The chairman of the Wisconsin commission at that time, Charles Cicchetti, later testified on cost recovery mechanisms in MDPU 906 on behalf of Boston Edison. Prof. Cicchetti testified in some detail that he was aware, and utility managers should have been aware, in the early to mid-70's of several of the problems regarding nuclear plant cost overruns and schedule slippage, and utility financial stress discussed above.

- Q: What special problems afflicted the Seabrook project in this period?
- Two problems which were particularly yexing for the Seabrook A: project were the continued regulatory problems which flowed from PSNH's decision to start construction before final approvals of the cooling system²⁶ were in hand. The construction permit was suspended from 1/24/77 to 7/26/77, and again from 7/21/78 to 8/10/78, as a result; the permit was under a cloud for most of this two-year period, including at least one interval in which PSNH curtailed construction in anticipation of permit suspension. In addition, Seabrook was the target of some of the strongest and most militant environmental opposition of any domestic nuclear plant. While this opposition, culminating in an occupation of the site in April, 1977 by over 1400 demonstrators, probably had little or no direct effect on the construction schedule or cost of the plant, it certainly insured an exceptional level of public scrutiny of the safety and financial decisions involving the plant.
- Q: How did the problems of Seabrook and the nuclear industry affect the Seabrook owners?

^{26.} If the cooling tunnels were ultimately rejected in favor of cooling towers, the environmental superiority of the site was open to question and rehearing; all investment at the Seabrook site was at risk so long as those approvals remained conditional.

A: There were several effects of both the general and the specific problems of Seabrook. The combination of rising prices, falling load growth, heightened regulatory scrutiny, and increased plant construction costs combined to force Northeast Utilities (NU) and United Illuminating (UI) to offer part or all of their Seabrook shares for sale. NU offered all of its 12% share in 1976, and UI offered half of its 20% share on January 26, 1979. This was UI's second attempt to sell part of its share; the first attempt, in 1976, floundered due to the permit suspensions. PSNH had been able to maintain its 50% ownership only because of the inclusion of construction work in progress (CWIP) in its ratebase. Legislation to bar CWIP was passed by the New Hampshire legislature and vetoed by Governor Thomson. The election in 1978 of Governor Gallen, who ran on a no-CWIP platform, forced PSNH to solicit interest in a portion of its entitlement early in December, 1978.

£

Ę

PSNH's financial condition in this period was so shaky that the NRC, in order to uphold the ASLB finding that PSNH was financially qualified to build Seabrook, was forced to restate the financial qualification standard. Previously, that standard had required "reasonable assurance" of financing; the Seabrook decision changed this to a standard which only required a "reasonable financing plan", without any assurance that the plan could be achieved. This revision

- 67 -

attracted much notice in the utility industry, and was clear evidence that PSNH, for a nuclear lead participant, was unusually vulnerable to financial difficulties.

The Maine utilities were familiar with PSNH's financial problems, as was anyone who was involved in New England utility matters in this period. Mr. Lee's testimony in this docket (p. 13) discusses BHE's knowledge of PSNH's condition, while CMP's understanding of the financial situations of PSNH and UI was laid out in more detail by Mr. Webb in U3238 (Tr. 1135-1138 and P-25 to p. 31), where he referred to PSNH "immediate needs" for cash as being "critical", attributed the unprecedented discounting of Seabrook share to PSNH's "desperate" straits, noted that investors did not know if PSNH "was going to be able to continue ... to pay interest", and described UI's circumstances as "dire". Mr. Kelly of CMP also described some problems of PSNH and Seabrook, and expressed skepticism that Seabrook 2 could even meet a completion date tow years later than the official estimate:

Q: Now I understand that you're not interested in increasing your ownership in Seabrook, Pilgrim or Millstone.

A: That is correct.

Q: But can you rank them for me in terms of which ones would you most likely invest in if you had to?

A: Reluctantly I would probably lean towards Millstone III.

Q: And why?

41.0

Ą

1

١Ī.

13

A: Because I believe that that project will be completed sooner and it is at an existing site with two other units. They do not apparently have anywheres near as severe regulatory problems as Seabrook has and obviously Pilgrim has.

Q: The capital cost of that plant is higher than Seabrook.

A: It is slighlty higher, yes, but it's better to get a plant in service than to - Seabrook could be considerably higher if it goes to the 1990 time frame - much higher than Millstone III.

Q: And with your 85-87 date for Seabrook you show a capital cost of \$17.43 per KW and for Millstone coming on in 86 you show \$23.74.

A: That's correct.

Q: So it's a plant coming on sooner, yet it costs more.

A: I don't believe that they're going to make that date. I'm saying if you ask me if I had my preference, I believe where Millstone III is substantially constructed, is being built by a utility that is three times as large as Publice Service Company of New Hampshire and I think the risks are considerably - are less in that unit. I say are considerably - they are less in that unit in my opinion.

Q: That's the first time I've heard that one. The larger the utility that's building it the lower the risk?

A: The larger the utility the more, generally speaking, financial ability they might have. They have a lot of experience with nuclear, much more than Public Service of New Hampshire, for example. They have two operating units and they ran Connecticut Yankeee very successfully. I'm not saying New Hampshire is not a good utility. Don't get me wrong. But they have more experience - a larger utility.

Q: Was PSNH's difficulty in financing its principal nuclear construction program in this period unique?

- A: No, it was not even unusual, except in degree. Delays in the in-service dates of nuclear plants, suspension of construction, and even cancelations, were often attributed to the financial condition of the constructing utility. Close to home, Northeast Utilities (NU) decided in 1977 to stretch out construction of Millstone 3, moving the scheduled in-service date back from 1982 to 1986, due to the unit's strain on NU's finances. Seabrook was also the major item in the construction program which was stressing UI's finances. As I discuss in my testimony in 84-120, the ability of Boston Edison (BECo) to finance its 59% share of Pilgrim 2 was also doubted by many observers, including the NRC staff, BECo employees, and CMP employees. As I will show in Section 8, PSNH's nuclear commitment (primarily to Seabrook) was much larger, in proportion to the size of the utility, than NU's nuclear commitment (primarily to Millstone 3), BECo's commitment (to Pilgrim 2), or UI's commitment (mostly Seabrook). Therefore, it should hardly have suprised any of the Seabrook owners that PSNH's ability to finance Seabrook was contingent on favorable, and even exceptional, ratemaking treatment. If that favorable treatment was withdrawn, or threatened, PSNH was sure to have difficulty financing its share of Seabrook.
- Q: How did the Maine utilities react to the information available at the end of this time period?

- 70 -
A: Despite all the warning signs, BHE committed itself to purchase 1.8% of Seabrook from PSNH, and CMP committed to 1% from PSNH and 2.5% from UI. Neither of these utiltiies appears to have attempted to link its purchase to any measures which would have increased the likelihood of completion of Unit 1, such as abandonment of Unit 2.

......

<u>5 - MID-1980: TMI, DPU 20055</u>

Į;

- Q: What is the significance of the June 1980 date for the Maine utilities' participation in the Seabrook project?
- A: This date is near the middle of the transfer process of Seabrook shares from PSNH to BHE and CMP. It also followed closely yet another upward revision in Seabrook cost estimates, with accompanying delays in the completion schedule. This was also over a year after the Three Mile Island (TMI) accident, giving the participants in Seabrook and other plants time to absorb the results of that event.
- Q: What important developments occurred for Seabrook 2 and the Maine utilities' participation, in the period from late 1978 to the summer of 1980?
- A: Four groups of events took place. First, PSNH received some important warnings regarding its nuclear construction program, including information about the costs and schedule of the Seabrook units. Second, PSNH's attempt to reduce its commitment to Seabrook was not wholly successful, due to saturation of the market for nuclear plant shares, and particularly Seabrook shares, among New England utilities, with a situation of scarcity changing to a situation of surplus. Third, the TMI accident further accelerated the

- 72 -

ongoing changes in nuclear regulation. Fourth, the general deterioration in the economics of nuclear power continued, accompanied by a virtual torrent of plant cancelations.

- Q: What warning signals regarding its Seabrook investment were presented to PSNH in this same period?
- There were several such signals. PSNH was a party to A: Massachusetts DPU 19494, in which I pointed out some of the errors in its load forecast: PSNH's forecast was remarkable for its overstatement of demand, even in an era of universally optimistic utility load projections. In the second phase of MDPU 19494, and again in NRC 50-471 and DPU 20055, I produced an analysis of the (then new) NEPOOL forecasting methodology, and (with Susan Geller) a review of the forecasts of all the major NEPOOL participants. Our testimony discussed numerous errors in each of these forecasts, which in most cases were both poorly documented and over-optimistic. Figure 1.2 demonstrates that our overall criticism was well taken, and that the NEPOOL forecast has indeed declined continually both before and since our review. MDPU 19484 also highlighted the enormous cost overruns at Pilgrim 1.

PSNH was also a party to DPU 20055, in which my testimony pointed out the history of nuclear power plant cost escalation, schedule slippage, and overruns. While the data

- 73 -

base available to me at that time was considerably more limited, I was able to present cost estimate histories for six completed units²⁷ and four more still under construction; both groups demonstrated cost overruns and schedule delays representative of those found in the more complete data sets presented in this testimony. In addition, I presented the results of the early regression analysis by Mooz (1978), which found that the construction costs of nuclear power plants receiving construction permits were increasing at \$141/kw annually, in 1976 dollars. Again, if PSNH were somehow unaware of the trends in nuclear costs, in cost overruns, and in schedule slippage, prior to MDPU 20055, it could hardly have been unaware of them by the end of that case.²⁸

27. The utilities, including PSNH, refused to provide further cost estimate histories, even for Maine and Vermont Yankee. Had PSNH cooperated in gathering and examining this data, rather than proclaiming its unavailability and irrelevance, perhaps Unit 2 would have been suspended or cancelled in 1980, leaving all the participants less exposed to the current Seabrook debacle: this case might involve the writeoff of 4.38% of a \$200 million investment, rather than a 9.68% share of an \$800 million unit.

28. The utilities' own presentation in MDPU 20055 contained some similar information, and revealed a lack of critical analysis in the utilities' construction planning. In particular, John Gmeiner, testifying for Montaup, attached to his testimony a copy of a NERA study (Perl 1978), and of an EBASCO study (Bennett and Kettler 1978), both of which are quoted in Section 4 of this testimony. Unfortunately, the utilities, including PSNH, took to heart the optimistic projections of these studies and ignored the dismal recitations of the industry's past and current problems. Most importantly, however, PSNH itself recognized that it could not afford more than 25% of Seabrook if it retained its shares of Pilgrim 2 and Millstone 3, or 28% if it sold off its shares of those other units. PSNH actually tried to sell its Seabrook share down to 20%, and to sell all of the other units. There was no market at all for Pilgrim capacity, the Millstone 3 shares moved very slowly (about a quarter of PSNH's share was sold in 1982), and by the end of 1980 there were commitments for sales only sufficient to bring PSNH down to 35% of Seabrook. Therefore, even by PSNH's calculations, it was overextended by some 40%; at realistic cost estimates, the financial burden would have been even greater.

Q: Did Seabrook suffer any other problems in this period?

- A: Yes. There was a 45 day carpenters' strike in 1979, and persistent problems with shortages of particular skilled trades. Due to PSNH's financial condition, the construction workforce was cut approximately in half in March 1980; this condition was to continue until the summer of 1981. In the third quarter of 1980 (just after the end of this review period), the project suffered a nine-week strike by iron workers.
- Q: What significant developments affected the nuclear industry nationally in this period?
- A: There were several important events or trends:

- 75 -

- The cost estimates continued to increase, and the schedules continued to slip, for those units which were not canceled.
- Nuclear unit cancelations, which first exceeded new orders in 1975, were continuing at unprecedented rates in the late 1970's and especially in 1980, while the last new orders occurred in 1978.
- 3. The regulatory response to the accident at Three Mile Island, and other NRC actions, dashed any hope of rapid recovery in the industry, and accelerated many of the previous adverse trends.
- Q: Did the cost estimates and schedule projections for nuclear plants improve between 1976 and 1980?
- A: No. Table 5.1 presents summaries of the cost and schedule histories of plants which entered service between January 1979 and June 1980. This Table is comparable to Tables 2.1, 2.2, 3.1, and 4.1. The calculated summary statistics indicate a slight improvement compared to the previous decade, but this is eclipsed by the fact that only two units reached commercial operation in this 18 month period. This is partially the result of new safety requirements following the TMI accident, but the trend was evident in 1978, as well, when only three units reached commercial operation. Even the fact that only the two units listed in Table 5.1 were in

- 76 -

their start-up phase, between operating license and commercial operation, when the TMI accident occurred, is evidence that the number of units nearing completion was shrinking. Considering that the apparent improvement in the ratios was really due entirely to an exceptional performance by Hatch 2,²⁹ while Arkansas 2 cost experience was as bad as average, and its schedule slippage was worse, the 1980 data indicate that the situation had not improved, and in fact had deteriorated considerably. Applying the cumulative results through 6/80 to the 4/80 estimate for Seabrook 2 would predict a cost of \$3.47 to \$4.51 billion dollars, and an in-service date of 7/88, while the results for Hatch 2 and Arkansas 2 alone would project a cost of \$3 - 3.7 billion and an in-service date of 3/88.

Table 5.2 updates the slippage analysis from Table 4.2. The cost and schedule estimates as of both 12/78 and 6/80 are listed, along with the percentage increase in the cost estimate, and the months of slippage in the in-service date. The schedule for the average of these 77 units had slipped

29. There is some tendency for second units which lag the first unit by more than two years to experience unusually small cost and schedule slippage after the first unit is completed. Hatch 2 is one good example of this effect; St. Lucie 2 is another celebrated case. I am not sure that the Maine utilities' could have been expected to see this pattern; if it did, the Hatch 2 experience would have to be discounted as a model for Seabrook 2, at least until Seabrook 1 entered service.

slightly faster than the time between the estimates, producing negative progress, and the average cost estimate had increased about 18% annually. Unless the schedule performance improved, the average plant would never be completed (and in fact, many of the units with negative progress in Table 5.2 have since been canceled.)

If Seabrook 2 were as fortunate in its schedule as the average <u>completed</u> plant (from Table 5.1) through June 1980, so it entered commercial operation in 7/88, and its cost only increased by 17.7% annually, it still would have cost \$6 billion; the later its completion, the worse this result was likely to be. As we will see, even PSNH's ability to complete the unit on PSNH's schedule and at PSNH's cost projection was highly questionable; on either a financial or an economic basis, it was only reasonable to expect that a continuation of recent trends would have been fatal to Unit 2, probably also to the plant, and possibly to the utility as well.

Table 5.3 compares the schedule projection for Seabrook 2 to that of other units which held construction permits, and which were listed as less than 10% complete in December 1980 (since I have not been able to find the same data tabulated for 6/80). The average of the eight units with COD schedules

- 78 -

was 4% complete (compared to Seabrook 2 at 7.7%), and was scheduled for completion in January 1990. None of the units was scheduled for operation until 20 months after the scheduled Seabrook COD; even WPPSS 4 (listed as 15% complete) was scheduled for 2/87 COD. Thus, the schedule estimate for Seabrook 2 was highly optimistic, compared to the industry average, and greater overruns than average would be expected.

- Q: Please describe the history of cancelations of ordered reactors within the US nuclear industry.
- A: Figure 5.1 portrays the annual and cumulative cancelations, through 1983. Figure 5.2 presents the number of new orders, the number of cancelations, and the net change in orders in the same period. While some of the canceled units had construction permits, units awaiting permits were more heavily hit by the wave of cancelations. Table 5.4 lists the plants canceled in 1977-80, with the construction status of each.
- Q: How did NRC regulation change in this period?
- A: Even before the TMI accident, the NRC was demonstrating a more cautious attitude towards potential safety problems. Where problems and solutions were identifiable, the NRC was increasingly reluctant to allow plants to operate without the

- 79 -

solutions.³⁰ The best example of this trend was the order which shut down several units in 1978, after an error was found in a Stone and Webster seismic design program. While this action by the NRC was widely criticized within the industry as "over-reaction," that criticism largely ended by the TMI accident.

The accident at TMI further increased the NRC's reluctance to take unnecessary risks with potential safety problems at reactors under construction or in operation. It was widely perceived that another TMI-scale accident might well be a fatal blow to commercial nuclear power development, and almost any cost imposed on individual plants was preferable to collapse of the industry.

Mr. Kelly described the effects of the Three Mile Island accident on Seabrook as

We don't know the problems at Three Mile Island. That's the risk situation and we don't know what might happen to Seabrook. There might be another \$200,000,000 required to make that plant meet the new criteria--or it might be 500--or it might be nothing--to meet the criteria the NRC might or might not come up with. We don't know, in our opinion, what's going to come out of the Three Mile Island situation as far as nuclear.

30. The NRC was less willing to address the difficult, "generic" issues which might bring into question the viability of the industry.

- Q: Did the utility industry literature continue to reflect the problems of the industry?
- A: Yes. From **Electrical World's** 1979 Nuclear Plant Survey comes these observations:

If you were disturbed by the statistics contained in last year's nuclear-plant survey, the 1979 roundup won't help to settle your stomach. Unit cancellations, delays, and postponements are on the rise, while the total number of reactor commitments, through 1995, has dropped alarmingly.

Another very disturbing element is the large number of postponements and delays in commercial operation, ranging from one year to as long as six years, with a concomitant increase - from seven to eleven - in the number of units now in the "indefinite" column. Just as discouraging is a new listing: two units in the "work suspended" designation.

Although we usually endeavor to be upbeat and optimistic in seeking the oft-elusive silver lining in a cloudy report, this time around offers us an unprecedented challenge.

The 1980 Survey, headlined "No reactors sold; More Cancellations", was more terse:

Since last year's survey, the commercial operation dates of some 80 units have been postponed, from one year to indefinitely, and nuclear commitments are down from last year's 195 units . . . to 193 units . . .

The **Steam Plant Book** continued its review of the state of the industry in the 1978 edition, which was published in December 1980:

Projected nuclear plant investment costs which have been trending upward since 1970 increased again in 1978. The latest average capital cost of nuclear units ordered in 1978 was projected to be about \$920/kWe (1978 dollars) by the time the units are completed and placed in commercial operation. An insufficient number of units were ordered in 1978 to provide a trend indicative for that specific year. The cost per kW of installed capacity ranged from \$815/kW to \$1070/kW in 1978 dollars. The overall increasing cost trend of nuclear units is attributable to such factors as increased design complexity, inadequate quality control in manufacturing and in field construction, shortage of skilled labor, added environmental equipment to meet newly established, more stringent environmental and safety standards, and escalating costs of equipment, materials and wages. (page xv)

- Q: Was CMP aware of the problems of Seabrook, PSNH, and the industry in this time period?
- A: CMP was certainly aware of industry problems, including the financial problems at Millstone 3, the effects of Three Mile Island on regulatory and investor confidence in nuclear investments, the upward trend in cost estimates, the continuing slippage in schedules, and the difficulty in licensing new plants. CMP was also aware that PSNH and Seabrook had problems. Specifically referring to Seabrook, but discussing nuclear issues in general, Mr. Kelly observed that

There is a certain amount of risk involved in the nuclear capacity and I believe the last two or three months have borne that out very clearly. . . [Seabrook would be cheaper in terms of KW cost than the anticipated cost of Sears Island] [u]nder the current cost that they estimate, assuming they're accurate . . Not knowing what's going to happen out of the NRC after the latest events, there are some people . . . that say it will be more expensive than coal, but I don't know. (ibid, page 184).

This is, of course, the fundamental problem with nuclear

- 82 -

power: the plants are generally economical at their projected costs, but the projections have little chance of becoming reality. Furthermore, Mr. Kelly did not expect the uncertainties and problems surrounding nuclear power development to be resolved soon:

Q: Okay. So right now you're generally pretty lukewarm to any nuclear. Is that right?

A: That is correct. That's exactly correct.

Q: But that could change momentarily, say within weeks?

A: No, sir. I doubt if it'll change within weeks. I suspect it'll take years before they get straightened out. With Three Mile Island it'll probably take a year --

His rebuttal testimony discussed these issues further:

Q: Mr. Kelly, are you aware of the original and current schedules for the Seabrook, Pilgrim, Millstone and Montague nuclear plants which are suggested in the ADL optimistic nuclear options?

A: Yes, I am. The original in-service dates for Seabrook 1 and 2 was 1979 and 1981 and the current dates are 1983 and 1985. The original in-service date for Pilgrim 2 was 1978 and the current date is 1985. The original in-service date for Millstone 3 was 1979 and the present date is 1986. The original in-service dates for Montague 1 and 2 were 1981 and 1983 and are now some time in the early 1990's. This constitutes a four year delay for Seabrook; a seven year delay for Pilgrim 2; a seven year delay for Millstone 3 and an estimated ten year delay for the Montague Station.

Q: What have been the primary causes of these delays?

A: Nuclear plant delays in New England have in generaly been based on a decline in load growth, financial problems, and regulatory and licensing delays. While there is some reason to believe that the load growth rates have stabilized, there is little, in my opinion, to justify the belief that financial problems or licensing and regulatory delays are going to be significantly reduced in the short term especially in regard to nuclear plants. Mr. Monty has more to say on this point.

Q: Do you believe Mr. Heuchling's assumed nuclear delays are reasonable?

A: Mr. Heuchling's assumed nuclear delays are consistent with the past history of delay and from that point of view they are not unreasonable. However, Mr. Heuchling's major theme is that nuclear delays are controlled primarily by reduced load growth in New England. While Mr. Heuchling's testimony is unclear on this point he may also be suggesting that with higher load growth in New England more nuclear plants could be brought on line. If this is an underlying assumption by Mr. Heuchling, he would necessarily be ignoring the huge impact regulatory and licensing delays have had on nuclear plants in New England and nation-wide. With the Three Mile Island incident fresh in the mind of the public and government and Central Maine's own experience with Maine Yankee, I see little reason to assume that the impact of regulatory delays will be removed ro reduced with regard to nuclear power. My primary concern is with the situation where load growth is higher than Mr. Talbot has assumed for New England and Maine and that nuclear plants will not be able to be built on a schedule to meet that load growth because of financial and regulatory problems.

Indeed, Mr. Monty did have more to say on the subject:

. . .I would consider the Company's . . . probability of getting 459 megawatts from a 1992 nuclear plant to be no greater than 25% . . . I base this judgment primarily on the current public attitude toward nuclear power prevailing since the Three Mile Island incident and the construction delays and regulatory difficulties encountered in the construction of nuclear plants even prior to the Three Mile Island incident . . . [Blased on these same considerations, I view the probability that nuclear plant construction will proceed on schedule in New England to be no greater than 50% . . . (Rebuttal, page 13)

Mr. Monty also offered his opinions that "indefinite

postponement of nuclear construction in New England", "an extraordinary escalation of nuclear costs", and "a failure of the regulatory process such that power plant construction in New England falls behind the actual load growth",

all four of these conditions have a high probability of occurrence. First, the postponement of nuclear power plant construction in New England rather than being a matter of judgement, is a matter of history. There is not a single nuclear plant proposed for New England which has not been significantly delayed. The Sears Island Nuclear Plant was cancelled because of regulatory requirements; the two Montague units have been indefinitely postponed because the Massachusetts Energy Facilities Siting Council has refused to hold the required siting hearings. The two Charlestown units do not have a site. As a result of court action the constructing utility has been unable to buy the Charlestown site from the General Services Administration. The Pilgrim No. 2 unit still does not have a construction permit although the project started eight years ago and has been almost continuously in the courts and before regulatory bodies for the entire period. The Nuclear Regulatory Commission recently announced a moratorium on new permits and there are currently several bills before Congress calling for a moratorium on nuclear power plant construction. The Millstone No. 3 plant is currently being constructed on a delayed schedule becasue of the inability of the principal owner to finance a normal construction schedule. This plant which was originally scheduled for completion in 1979 is now scheduled to be finished in 1986. The two Seabrook units are currently being built following two halts to plant construction caused by controversies over the cooling water system and the appropriateness of the plant site. Most recently the plant has been rescued from a third construction halt by the purchase of part of the ownership interest of Public Service Company of New Hampshire by utilties in the other New England states. I have also included Exhibit Monty-6 which shows nuclear plant deferrals and cancellations in 1977 and 1978. In 1977 there were six reactors cancelled, totalling 6,384 MW and in 1978 there were twelve reactors cancelled, totalling 12,433 MW. This data and exhibit were taken from the Atomic Industrial

Forum, Inc. publication INFO dated December 31, 1978. All in all, the construction outlook for all nuclear power plants is highly questionable at the present time.

Second, nuclear power plant costs have already undergone an extraordinary escalation. A 800 megawatt nuclear plant such as Maine Yankee which was completed in 1972 at a cost of less than \$300 a kilowatt. A 1200 megawatt plant scheduled for completion in 1987 will probably cost about \$1700 a kilowatt. This increase represents almost 500% cost escalation in 15 years, an escalation appreciably higher than expected for the cost of living index. Much, if not most of the increase has resulted from added requirements imposed by the Nuclear Regulatory Commission. In light of the Three Mile Island incident it is certainly reasonable to assume the Nuclear Regulatory Commission requirements and the attendant added costs will increase the extraordinary escalatin of nuclear costs. .

Finally, the failure of the regulatory process in allowing nuclear plant construction to progress pm schedule is a fully demonstrated fact of history. Not a single New England nuclear plant has been built on schedule since Maine Yankee was completed in 1972. Every nuclear plant currently in process in New England has been delayed in some manner by the regulatory process as I have already discussed. To assume that substantial further delay will not be encountered in my opinion is to engage in wishful thinking. In light of delays of the plants now contemplated, there should be little confidence that future delays will not be beyond the time the plants are needed to meet actual load growth. Regulatory issues such as nuclear safety and construction work in progress are highly emotionally matters as evidenced by the public mood in the aftermath of the Three Mile Island incident and by the recent New Hampshire gubernatorial election, where "construction work in progress" was a major campaign issue. Public pressures are very likely in the future to delay the completion of nuclear plants beyond the dates when they are required to meet actual load growth. (ibid)

This was a fairly scathing denunciation of nuclear power, and certainly indicates that CMP was not blind to the problems of the technology.³¹

Mr. Webb's rebuttal in that proceeding also discussed the regulatory, financial, and risk problems of nuclear power:

It is a generally accepted theory that due to the regulatory process governing rates of electric utilities, period of extended "heavy" financing are also period of financing deterioration. It is further generally true that weaker credits must pay more for borrowed funds. Therefore, if we assume that the "optimistic nuclear option" significantly increases CMP's external capital requirements during the 1979-1983 period, it is also reasonable to assume that CMP's overall cost of capital will tend to be greater than it otherwise would have been.

General federal government and regulatory ambivalence toward the nuclear industry coupled with the Three Mile Island incident and the shutdown of various nuclear plants has created an attitude of uncertainty in the marketplace is presently demanding a premium for investing in nuclear-related utilties. CMP Exhibit No. Webb-1 shows that for the period since the accident at Three Mile Island through May 21, 1979, the New York Stock Exchange Utility Index declined 3.8%, while utilities with significant current or future nuclear generation declined 6.7%. During this same period Central Maine Power Company stock declined 10.5%. How long this "nuclear premium" will be reflected in the marketplace is difficult to say, but the financial risks associated with nuclear generation, which have been highlighted since the Three Mile Island incident and subsequent shutdowns, are obviously weighting heavily on the minds of investors and may well indicate a slow return to the point where no "market premium" is

31. Mr. Monty's list also included an endorsement of the NEPOOL forecast, indicating that his perceptions were not infallible. However, that endorsement consisted only of the claims that the NEPOOL staff was professional and that its model was large, new, and "state of the art"; compared to his specific arguments on other topics, this is close to damning by faint praise. associated with nuclear intensive companies . .

The "optimistic nuclear option" in general assumes there is no additional business of financial risk associated with basing the energy future of this state and the financial well-being of the owners of Central Maine Power Company totally on the future of nuclear generation. In my opinion, that is not reasonable, especially when we face the unanswered questions of spent fuel disposal, decommissioning costs and methodology, regulatory delay and social and political opposition. Although I believe that nuclear power is essential to the energy future of this country, I also believe that any decision regarding a major new commitment to nuclear at this point in time must consider the potential financial impact of these many risks. 6 - THE EARLY 1980's

- Q: Did the patterns and trends you identified in earlier sections continue from June 1980 to the end of 1982?
- A: Yes. The pattern of cancelations is shown in Figures 5.1 and 5.2. The problems of the nuclear industry were widespread; utilities with nuclear construction programs became particularly suspect in the investment community. The cost overruns and schedule slippage continued.
- Q: What was the cost and schedule experience for units entering service in this period?
- A: Only seven units went commercial in these 30 months: one in 1980, four in 1981, and two in 1982. The average cost and schedule experience of these units was worse than that of the previous decade, and six of the seven units had higher duration ratios and myopia factors than the historical average, as shown in Table 6.1. The one exception was LaSalle 1, a Commonwealth Edison unit, which beat the averages by small margins. If the Seabrook 2 cost estimate of 12/82 were subject to the average myopia and duration ratios that these seven units had experienced, it would have been completed in 5/94 and cost between \$10.8 and \$12.4 billion.

- Q: How does this differ from the results of continuing the average experience of all the units which entered service by 1982?
- A: Applying the 26% myopia and the 1.79 duration ratio to PSNH's estimate of a 4.58 year duration and a cost of \$2.7 billion would result in a cost of \$6.5 to \$7.8 billion, and a COD of 2/91.
- Q: What was the experience of units under construction in this period?
- A: This data is displayed in Table 6.2, which shows an average progress ratio of 33.9% and an average annual cost increase of 25.3%. If this performance were duplicated by Seabrook 2 during the remainder of its construction period, it would be completed in 6/96 at a cost of some \$57 billion. As in the previous Section, a continuation of the cost trends for units under construction would preclude completion of Seabrook 2.
- Q: Was the Seabrook 2 estimate consistent with the general industry cost and schedule projection methodologies?
- A: Not quite. In 12/82, Seabrook 2 was reported to be 16.9% complete: virtually all plants listed as less than 20% complete had been canceled or indefinitely deferred by this point. Table 6.3 lists the units less than 30% complete as of 12/82. The five other units with scheduled COD's and less than 30% complete averaged 18% completion, and a scheduled

- 90 -

in-service date of 12/88. Of these units, the one closest to Seabrook 2's COD schedule was Limerick 2, which was 30% complete, and was still scheduled for operation five months after Seabrook 2. Other units scheduled for completion in 1987, comparable to the Seabrook 2 schedule, were listed as up to 62% complete. Therefore, it is likely that PSNH's schedule for Unit 2 (and thus at least part of the cost projection) was very optimistic at that point, even by industry standards. As a result, simply using historical experience with utility cost estimates would have been optimistic: since the Seabrook 2 schedule was especially aggressive, it was also likely to slip more than the average.

- Q: What was the status of the units which were cancelled in this period?
- A: Table 6.4 displays this data. The high rate of cancellations shown in Table 5.4 continued, with units holding construction permits becoming an ever larger portion of the cancelations. Of the six units with permits canceled in 1979 and 1980, four were killed by state actions, and a fifth was owned by General Public Utilities (GPU), which also owned Three Mile Island, and which had neither the cash nor the inclination to attempt to continue construction of another nuclear plant in the aftermath of the TMI accident. None of the canceled plants in 1979/80 had been listed as more than 5% complete.

- 91 -

In contrast, 1981 and 1982 saw the cancelation of fourteen units with construction permits, most of which were canceled because the utility determined either that the unit was uneconomic or that the unit could not be financed. When four of the units were canceled, they were reported to be more complete than Seabrook 2 was at the end of 1982, and four more were over 5% complete.

Q: Was there any more bad news for Seabrook in this period?

A: Yes. Perhaps the worst news was that the market for Seabrook shares, and indeed for any nuclear plant under construction, had finally dried up completely. PSNH was unable to reduce its ownership share below the 35% level, and UI was left with 17.5%. Thus, PSNH had about a third more plant to finance than it had told its commission it could afford,³² and UI had 75% more than it wanted.³³

In January 1982, the NHPUC ordered PSNH to reduce its ownership share of Seabrook from 35% to 28%, indicated that it would attempt to block further work on Unit 2 if PSNH's bonds were downgraded again, and offered PSNH the option of

33. NU was also unable to find a buyer for the remainder of its entitlement in Seabrook, but its financial exposure was less extreme than that of UI or especially PSNH.

- 92 -

^{32.} It is not clear whether the 25% or the 28% target was more applicable, since Pilgrim 2 was canceled, rather than sold, and only part of the Millstone share had been sold.

canceling Seabrook 2 to alleviate its financinal problems. In July 1982, following the next reduction in bond ratings, the NHPUC attempted to force PSNH to suspend construction of Unit 2 until it could either reduce its share of the plant to 28%, complete Unit 1, or receive some equivalent financial assistance from the Joint Owners. The PUC recognized that PSNH's finances were critically stressed by the attempt to build two units simultaneously, and acted to protect the utility from itself. PSNH appealed the PUC's order; CMP and MPS, along with other Joint Owners, joined in the appeal in support of PSNH. It is difficult to understand why these Maine utilities supported PSNH's efforts to destroy itself; on the face of it, this action was totally imprudent. If the Maine utilities had any role in the proceeding, it should have been in support of the NHPUC. As it turned out, the NH Supreme Court's suspension and eventually overruling of the PUC's order was predicated on the statutory limits of the PUC's powers, rather than on the merits of the case. Nonetheless, the opposition of even a single joint owner to continued expenditures on the plant might have forced PSNH to comply with the spirit of the PUC order.

In February 1982, the NRC staff produced a list of expected 1982 cancelations, which included Seabrook 2. While this study was primarily intended as a summary of current expectations, and did not include any new financial or

- 93 -

economic analysis, it clearly identified Seabrook 2 as among the most likely candidates for prompt cancelation.

In November 1982, the MPUC found that Seabrook was likely to cost over \$8 billion, as compared to PSNH's estimate of \$5.24 billion in December. I have not found any indication that any of the Maine utilities re-evaluated the cost-effectiveness of Seabrook 2 at the PUC's cost estimate.

7 - ECONOMIC ANALYSIS

- Q: How have you investigated the economic desirability of Seabrook 2?
- A: I have compared the cost of energy from Seabrook 2 to the cost of energy from new coal plants, and from existing oil plants, using my estimates of Seabrook cost and NEPOOL estimates (NEPLAN 1976) for most other inputs. This analysis as of 1976 is presented in Table 7.1. Since the Maine utilities have not provided their own analyses for most of the Seabrook planning and construction period (and apparently did not perform any analyses), these NEPOOL reports are my best estimates of the Maine utilities' assumptions at this time. In fact, CMP relied on these studies in later analyses, and these coal plant costs were similar to CMP's estimates of Sears Island costs. Many of the assumptions are highly favorable to nuclear power, including

- the absence of decommissioning charges

- the absence of capital additions
- the lack of any real escalation (that is, above the level of inflation) in nuclear O&M expenses

- the use of a very high nuclear capacity factor.

In addition, the Seabrook cost estimate used in Table 7.1 is the average of the results for completed units in Table 3.1, rather than the more pessimistic results for the units under construction in Table 3.2. Even in Table 3.1, the myopia results, which recognize the construction stage (and expected remaining duration) of the plant, are more pessimistic than the results from the historic cost ratios, which neglect the long expected construction period for Seabrook 2.³⁴

Tables 7.2 to 7.4 update this analysis to 1978, 1980, and 1982, respectively. NEPLAN revised its maintenance assumptions in 1979 (NEPOOL Planning Committee, 1979), and revised most of its assumptions in 1982 (NEPLAN 1982). Table 7.2 and 7.3 compare the cost of Seabrook 2 power to the cost of energy from existing oil plants, as estimated by CMP in January 1979 and February 1980, and provided in the restrospective analyses of Exhibits Webb-15, Webb-17 and Webb-18 in 82-266.³⁵ Table 7.4 uses actual Wyman 4 oil prices in 1982, and NEPLAN inflation rates. These tables contain the same sources of nuclear optimism as Table 7.1, and the 1980 and 1982 analyses also do not correct for the highly aggressive nature of the Seabrook 2 cost estimates at

34. The Tables subtract out the sunk cost of Seabrook 2 at each point in time, which is appropriate for utilities which already owned Seabrook shares. For new purchases, the entire cost is relevant.

35. CMP has not provided comparable information for 1976.

- 96 -

those times.

- Q: Was there evidence by 1976 to suggest that these assumptions were optimistic?
- Table 7.5 lists the annual non-fuel O&M expenses for A : Yes. all nuclear plants in operation for each year from 1968 to 1981. Table 7.6 provides the booked plant cost for each plant for each year in the same period, along with the increase in the cost in nominal and constant dollars. O&M expenses were clearly increasing much faster than inflation, and capital costs for existing plants were also increasing. Table 7.7 lists the capacity factor for each PWR of more than 300 MW, for each full year of operation through 1981, along with the average capacity factors for all experience, experience in years 1 to 4 (immature years), and experience after year 4 (mature years) as of 1975, 1977, 1979, and 1981, corresponding to the data available in 1976, 1978, 1980, and 1982, respectively. Since the average size of these units was less than that of Seabrook, and since virtually all observers (including NEPOOL) have expected and found that large units have lower capacity factors than small units, even applying these historical capacity factors to Seabrook would be optimistic. Nonetheless, the historic capacity factors were consistently less than NEPLAN and Maine utilities' projections for Seabrook. Column B of Tables 7.1 through 7.4 demonstrates the effect of using cumulative

- 97 -

average PWR capacity factors instead of NEPLAN's baseless assumptions.

CMP was aware of the cost increases in operating plants, as Mr. Kelly noted in U3238 (Tr. 229-230).

- Q: The--so I would assume with respect to--using Seabrook as an example--if Seabrook were actually operating, if it were licensed completely by the Nuclear Regulatory Commission and operating, you would view it differently than you would today?
- A: We would look at it slightly different on that one criteria, but, as you know, the other major critia I mentioned was risk, and that obviously would have some bearing.
- Q: If I understand it, the risk you were talking about was the risk that the plant won't be operating when you want it to be operating.
- A: The risk is the nuclear risk in general, the risk of probable increased costs of those plants which we see about in the papers all the time.
- Q: Here, though, we're talking about--the assumption now is that Seabrook's operating already, so I would assume you already know what the costs are.
- A: Yes, but the back-fit costs to keep some of these nuclear

- 98 -

plants to meet the criteria, if they change the criteria at the NRC--which is conceivable; I guess everybody would have to agree to that--the costs could continue to go up. We would look at it if it was operating.

Q: How do these results compare to the results of Mr. Webb's retrospective analyses of Pilgrim 2 costs in Exhibits Webb-15, 17 and 18 in PUC 82-266?

1-----

 $l_{\rm f}$

Tables 7.8 and 7.9 repeat these analyses, but increase the A: fixed charges by the ratio of the average projection of Seabrook 2 cost from historical experience (from Tables 7.2 and 7.3) to BECo's cost estimate for Pilgrim used in Mr. Webb's exhibits. These Tables also start in the year indicated as the first year of Seabrook 2 operation in Table 7.2 and 7.3, and compute a cumulative discounted difference at the discount rates derived in those Tables. Even using CMP's capacity factors, Table 7.8 indicates that a realistic review of the dependability of BECo's cost estimate would have indicated that Seabrook 2 would be much more expensive than oil. Table 7.9 indicates that by 1980, CMP's assumptions would indicate that power from Seabrook 2 would pay off against oil in several years, if construction of Unit 2 were still possible. Seabrook 2 looks better in Table 7.9 because PSNH's official estimate was extremely optimistic, and I have not corrected for that source of error. Furthermore, both the nuclear and oil cost projections in

- 99 -

this Table are so high that it is difficult to believe th. other, less expensive options were not available.

Figure 7.1 reproduces Exhibit Webb-15, but adds a realistic Seabrook busbar cost, derived by multiplying BECo's capital cost recovery (in mills/kwh) for Pilgrim by the ratio of my realistic cost estimate for Seabrook 2 (\$3122 million) to BECo's estimate used in preparing the Webb-15 (\$1521 million). The cost advantage of the BECo estimate over coal is obliterated by an increase of this magnitude and would have been eliminated by a cost increase as small as 75%. Therefore, Exhibit Webb-15 demonstrates that Seabrook 2 power was virtually certain to cost more than power from BECo's hypothetical coal plant.

Figure 7.2 reproduces a similar analysis by BHE, from the July 1977 Base Load Capacity Expansion study (Exhibit Lee-7). The capital cost of the BHE nuclear option (apparently the NEPCo units at \$910/KW or \$1.05 billion each) is increased to reflect my 12/76 corrected cost estimate for Seabrook 2 (\$3.122 billion).

- Q: Were these the only comparisons that the utilities should have conducted at the time?
- A: No. Once Seabrook 2 was found to be uneconomical compared to continued oil consumption or new coal plant construction, it

- 100 -

still remained to be determined whether the coal and oil options were the best choices. Other alternatives which should have been considered as early as 1976 included aggressive conservation programs, coal conversions of existing capacity in Maine and elsewhere in New England (the Maine utilities might, for example, have offered to purchase BECo's efficient Edgar station and converted it to coal, rather than allowing BECo to dismantle it), customer-owned or utility-owned cogeneration (fired by wood, coal, or oil), small hydro plants, trash-burning facilities, and purchases from (or co-operative development in) Canada. It is my understanding that CMP never studied most of these options seriously during the period of its Pilgrim investment, and those which it did pursue only entered its supply plans rather late in the 1970's or in the early 1980's, and were not generally seriously compared to nuclear expansion. For example, in commissioning a study of cogeneration potential by C. T. Main, CMP basically assumed the results of the study (U3238 Tr. Q-22 to Q-25). Had CMP analyzed the issue without prior biases, it would almost certainly have found that cogeneration is not "too small, too costly, or too geographically diffuse" to justify significant development, and much of the cogeneration capacity now in the pipeline could have started up years earlier. The same is true, of course, of other small power producers.

Q: What do you conclude from these analyses?

-101 -

- A: Each of these analyses indicates that the use of a realistic Seabrook 2 cost estimate, combined with standard NEPOOL assumptions, would have resulted in the conclusion that Seabrook 2 power would be more expensive than power from new coal units, for any analysis performed from 1976 to 1982, and that Seabrook 2 was not competitive with existing oil plants in most of this period. This is true despite the use of the optimistic nuclear assumptions I cited above.
- Q: Why do your conclusions regarding the economic desirability of Seabrook 2 differ so much from those of Dr. Perl?
- A: There are several reasons. The most important include:
 - Dr. Perl assumes throughout that Unit 2 was financially feasible, which was in doubt by 1976. Among other things, this assumes that Unit 1 rate shock (or ratemaking to avoid that shock) would not endanger the financing of Unit 2.
 - Dr. Perl assumes that nuclear, coal, and oil were the only available choices. This is clearly contrary to fact, as Hydro Quebec, Maine's small power producer programs, and California's conservation programs have demonstrated.
 - Dr. Perl uses very low discount rates, which are calculated from an incorrect method. Even if it were correct, it would not have been reasonable to expect the

- 102 -

utilites to use the discount rate methodology which Dr. Perl prefers.

- Dr. Perl's nuclear cost estimation methodology has some fundamental technical shortcomings, and it is not a method which the utilities could reasonably have been expected to employ, especially in the early- to mid-1970's.
- Most importantly, Dr. Perl assumes that it was prudent to continually expect nuclear construction and operating costs to stop increasing.
- Q: You discuss financial feasibility and other power supply options elsewhere in your testimony. What is wrong with Dr. Perl's discount rate methodology?
- A: Dr. Perl uses the after-tax cost of money (ATCOM) as a discount rate, which is the average cost of capital to the company, minus the tax credit due to the deductibility of the interest on debt. Using the average cost of capital is erroneous, since the discount rate used should reflect the degree of risk involved in the projected stream of costs and benefits. As CMP noted many times in U3238, nuclear is a very risky investment, riskier than coal plant construction, and almost certainly riskier than any other major activity of the Maine utilities, and should therefore be assigned a higher discount rate. Dr. Perl is actually discounting

customer costs, rather than utility costs, and should therefore use approximations of customer discount rates, rather than utility discount rates. However, I would not expect a utility in the mid-1970's or early 1980's to recognize these relative fine points in economic evaluation. Thus, I accept as reasonable the past use of discount rates based on average utility costs of capital, despite the fact that it is not quite correct. My disagreement with Dr. Perl centers on his use of the ATCOM, rather than the full cost of capital.

Dr. Perl believes that the present value of an expenditure is the same, regardless of whether the cost is expensed or capitalized, so long as the discount rate is return net of the debt tax shield, and thus that he has constructed his analysis so that consumers will be indifferent between expensing and capitalizing costs. The "after tax cost of money" Dr. Perl defines is only relevant to the company if (a) revenues do not vary with financial structure (which is true for most corporations, but not for utilities), or if (b) there is no taxable return on the investment (neither a delayed return, such as AFUDC, nor an immediate return, such as rate base treatment). If the return on investment is to be covered by increased revenues, taxes must be <u>added</u> to the cost of money, not subtracted, to establish a discount rate at which the consumers would be indifferent between expensing and capitalizing expenditures. Under traditional rate-base treatment, the utility is paid a cash return on its investment, and it must therefore pay additional taxes if it capitalizes, rather than expenses, its expenditures. Hence, the discount rate at which the consumers are indifferent between expensing and capitalizing is the overall rate of return, plus income taxes. Only if the capitalized investment yields neither a current return nor a future return will the net-of-tax rate be the discount rate at which ratepayers are indifferent between expensing and capitalizing the cost.

- Q: Does Dr. Perl offer any support for his claim that this ATCOM method is correct?
- A: Yes. In response to 33 Staff 19, he offers some calculations which purport to show that the ATCOM produces the same present value of rates, regardless of the time period of the recovery of costs. In this response, he has made the counterfactual assumptions that (a) the tax life of Seabrook 2 is one year and (b) the flow-through method of tax accounting is used. As a result, he implicitly assumes that the government makes a \$500 (for the \$1000 dollars of plant cost in his example) loan to the ratepayers for the duration of the cost recovery.

The more realistic example in Table R-1 in my rebuttal

- 105 -

testimony in Phase 1 found that the rate of indifference was the average cost of capital, plus taxes on equity. Recognition of tax credits and accelerated depreciation would bring the break-even discount rate down towards the average cost of capital.

- Q: What rates were utilities using for this type of analysis in this time period?
- A: NEPOOL studies appear to use the overall cost off capital. I am not aware of any utility analyses in the 1976-1982 time period which used the ATCOM as a discount rate.
- Q: What are the problems with Dr. Perl's technical approach to nuclear cost estimation?
- A: A: There are three generic problems with the approach to nuclear cost projections, which are intrinsic to any regression analysis across plants. First, the data on construction costs are not well suited to comparison between plants, since the cost of each plant will depend on the amount of escalation included (and hence on the amount of work performed in each year), the utility's AFUDC rates, and whether CWIP was included in rate base (and if so, how much and for how long). Correcting for differences in prevailing prices, financing costs, and accounting practices, to produce comparable cost figures for individual plants, requires tremendous amounts of data, or some strong assumptions. The
same is true for such other site-specific and company-specific factors as labor-management relations, and the accounting treatment of nuclear-related overhead.

Second, there is an intrinsic selectivity bias in this technique: the successful plants are included in the data base, while the canceled or delayed plants are not. This problem is particularly severe for later cohorts, for which only a few exceptional plants have entered service (and the data base).³⁶ Treating these exceptions as if they were typical of their cohorts understates the time-related cost trend.

Third, the results of these projections are very sensitive to the functional forms and independent variables chosen, especially where it is necessary to project the effects of variables well beyond the range of the historic data. For example, the continual increase in plant cost with time can be modeled as a function of construction permit (CP) issuance date, commercial operation date (COD), the average of the CP and COD dates, the number (or MW) of plants in service (or under construction) at the CP or COD, the cumulative operating experience in plant-years (or MW-years) at the CP or COD, the number of NRC regulations issued during

36. The same may be true for large plants, which are concentrated in the later cohorts.

construction, ³⁷ and so forth.³⁸ Each of those variables may be transposed as a logarithm, an exponential, a reciprocal, a power or root, and more. Each variation may produce a different projection for a particular unit, especially for one near or beyond the end of the data set, such as Seabrook.

It also would have been impossible for the utilities to have performed most of the analyses which Dr. Perl suggests they might have performed, since he uses data through 1982 to estimate construction and operating costs as early as 1973. Even assuming that the utilities could have done these analyses with data that did not yet exist, I do not believe that it is reasonable to expect that they would have done so, and it is not at all clear what they would have concluded had they used Dr. Perl's techniques with the data then available and their own choices of specifications.

Q: What does Dr. Perl assume regarding the adverse trends in nuclear construction and operating costs?

37. "Regulation" may be defined in several ways, to include regulatory guides, bulletins, and so on, and the number of the applicable document can be measured as an average number issued per year of construction, total issued during construction, total issued at CP or COD, etc.

38. Since Dr. Perl chooses to assume in each year that there will be no more bad news, this is not as important an issue as it is for more realistic analysts, such as Komanoff and ESRG, who attempt to forecast future regulatory effects.

He assumes that in each year it was prudent and correct to A: ignore past experience and to assume that future costs will not increase from current levels. This is his most serious error, by far. The data and industry quotes which I present, and the regression results which Dr. Perl presents, all indicate clearly that the cost of building and operating nuclear units was rising steadily throughout the 1970's (and even before), and there was much evidence that the trend was continuing and even accelerating at many times. Dr. Perl has made many incorrect projections of nuclear plant costs, going back to at least 1978, although he has often warned his readers that his conclusions were based on the assumption that nuclear cost escalation (or at least the worst of it) was over. I do not believe that utilities which based investments on Dr. Perl's admittedly optimistic projections were prudent at the time, and I disagree strongly with Dr. Perl's suggestion that retrospective prudence determination should accept utility errors based on the naive assumption that nothing else can go wrong with nuclear power.

8 - FINANCIAL ANALYSIS

- Q: What is the difference between economic feasibility and financial feasibility?
- A: Economic feasibility is desirability of the plant from a cost-benefit perspective, in terms of its costs compared to alternative sources of power. Financial feasibility is the ability "to get from here to there", to actually pay for the investment. The previous section presents a very strong case that Seabrook 2 was not economically feasible as far back as 1976. But even if the plant were economically feasible, compared to a hypothetical (and worse-case) alternative of burning oil over the life of the unit, it could not be built if it were financially infeasible. This is the situation that Seabrook is in now: neither unit is likely to be economically feasible, but we will never know, since unit 2 has become financially infeasible and unit 1 is likely to follow soon.
- Q: How did the relative size of PSNH's proposed nuclear construction program compare to those of other New England utilities?
- A: Table 8.1 compares the 1972/73 commitment (in MW's and in projected dollar costs) by NU, UI, and BECo in nuclear plants

- 110 -

planned for operation in the late 1970's and early 1980's (Seabrook, Millstone 3, and Pilgrim 2) to PSNH's commitment. The table also lists various measures of the size of the utilities, such as peak demand, sales, revenues, and net plant in service, and the ratios of the size measures to their nuclear commitments. The relative burden on PSNH would have been much heavier than those on any of the other utilities by all of these measures. While I have not performed this tabulation for all the major New England utilities, I believe that the results would be the same if any of the other utilities were used instead. Thus, it could have been anticipated in 1972 that, if any major New England utility were stressed by its nuclear construction program, PSNH would be the most likely candidate. It could also be determined that PSNH was undertaking a much larger commitment to a single plant, in proportion to its size, than any other major utility in the region.

- Q: Did this relationship persist throughout the period of Seabrook 2 construction?
- A: Yes. Tables 8.2 through 8.5 update this analysis to 1976, 1978, 1980, and 1982, respectively. Since UI originally attempted to sell Seabrook shares in 1976 to alleviate its financial problems, and renewed its attempt in 1978, and since NU deferred construction of Millstone 3 in 1977, and offered its share of Pilgrim and Seabrook for sale in 1976

- 111 -

for similar reasons, these utilities were financial canaries for the other New England utilities. By 1978, it was well known that BECo was having difficulty financing Pilgrim 2 without CWIP in ratebase.³⁹ In 1976, and thereafter, PSNH was more exposed than any of these utilities, whose nuclear investments were already causing considerable difficulty. Thus, the financial problems for PSNH's commitment to Seabrook 2 should have been evident as early as 1977, when NU slowed down construction of Millstone 3, and certainly by 1980.

- Q: Did the financial analyses of the Maine utilities support similar conclusions?
- A: Yes. From CMP's viewpoint, it is particularly significant that BECo was carrying a greater nuclear commitment than CMP found prudent for itself. Tables 8.3 through 8.5 include financial data for CMP, at the nuclear investment levels which CMP found excessive in Mr. Monty's testimony in the second round of U3238 (filed 8/22/80): 280 MW of Seabrook, 28 MW of Millstone 3, and 33 MW of Pilgrim 2. Mr. Monty described this case as "deleterious", producing "significantly higher risk" for CMP and creating serious effects on CMP's financial status, at least without CWIP in ratebase (which PSNH lost early in 1979). Assuming that this

39. See Staff Exhibit 57, PUC 82-266, quoted at the end of Section 4 of my testimony in 82-266.

- 112 -

unacceptable burden was also recognizable in 1978, CMP's internal analysis provides a benchmark for the nuclear burden on PSNH. In 1978, PSNH was carrying larger proportional nuclear costs than CMP's unacceptable case, and the situation deteriorated further in later years. Thus, the financial problems for PSNH's commitment to Seabrook should have been evident to CMP as early as 1978.

In addition, MPS was aware that its Seabrook burden was excessive without CWIP or some other exceptional ratemaking (Bustard testimony, pages 12-13). Tables 8.3 to 8.5 demonstrate that PSNH was more heavily burdened by Seabrook than was MPS.

- Q: Were these problems evident to the utilities involved in the Seabrook project?
- A: Yes. For example, the MMWEC Prospectus dated 9/13/78 noted that

The construction and operation of Seabrook Nos. 1 and 2 will be dependent upon the financial ability of all owners, particularly PSNH as the sponsoring utility, to provide the necessary funds to pay the costs of construction and operation. No assurance can be given that the joint owners will continue to be able to provide their share of construction funds as needed.

PSNH has stated that its ability to provide adequate funds for its construction program will depend on, among other things, its ability to borrow funds, to raise equity capital, and to generate funds from operations. PSNH has indicated that it plans to acquire a major portion of the required funds from external sources and that this external financing represents a major undertaking for it. In this connection, PSNH has stated that, among other factors, it must obtain adequate and timely rate relief. (page 26)

The financial capability of PSNH was also an issue in DPU 20055.

- Q: What would Tables 8.1 through 8.5 look like if realistic cost estimates for Seabrook 1 and 2 were substituted for PSNH's estimates?
- A: The cost of Seabrook, and hence the cost burden for PSNH would increase dramatically. Considering that PSNH's burden was already much heavier than that of utilities which were admittedly over-extended, even at their own cost estimates,⁴⁰ for most of these years, observers familiar with the data I present in Sections 2 to 6 should have known that PSNH's investment in Seabrook was ambitious in 1972, risky in 1976, impossible after the election of 1978 (and the attendent loss of CWIP), and self-destructive thereafter. Whatever was true of the risks of PSNH's involvement in Seabrook was also true for participation by other parties who were, as MMWEC noted, dependent on PSNH's ability to finance its share of the plant. As I note above, the Maine utilities should have been

^{40.} Perhaps one of the reasons that NU, UI, and other utilities limited, or attempted to limit, their nuclear exposure to the extent that they did, was the realization that the cost estimates used in their financial projections were optimistic, and that the actual results were almost certain to be worse.

familiar with the history of the nuclear industry, and should have anticipated just such cost escalation as has actually occurred, and should have recognized that the chances of completing Seabrook, and particularly of completing Seabrook 2, were slim.

- Q: What has actually occurred, in terms of the effects of Seabrook construction on the participants?
- Most of the major participants in Seabrook have been A : subjected to greater financial stress than they would have voluntarily undertaken. The best known examples of this distress are PSNH, which has eliminated common and preferred dividends, and UI, which has reduced common dividends, but Central Maine Power and several of the smaller utilities (including MPS) also consider themselves to be in difficult, if not impossible, financial situations, and have taken such unusual steps as cutting dividends. The largest New England utilities are in somewhat better shape: NEES because of its relatively small share of Seabrook and Millstone, as well as FERC regulation, BECo because of the cancelation of Pilgrim 2, and NU because of the delay in Millstone 3 construction, and exceptional rate relief. NU's situation may change if the cost of Millstone 3 continues to rise.

9 - LOAD FORECASTING

- Q: What relevence do the forecasts of the Maine utilities and of NEPOOL have to the prudence of the Maine utilities' investments in Seabrook 2, and of the prudence of CMP's investment in Pilgrim 2?
- A: The forecasts should not have had much of an influence on these decisions, and they should not therefore be of much concern in this proceeding, or in 84-120.
- Q: Why should the forecasts have had little influence on the utilities' decisions with regard to nuclear purchases and construction?
- A: Most of the cost of nuclear investments can not be justified, and would not be necessary, simply to meet peak demand (or more accurately, to provide reliable service). There are always less expensive approaches to covering load growth: expansion of capacity at existing hydro sites, construction of combustion turbines and diesels, load management, or even construction of new (or renovation of old) fossil steam plants. Nuclear plants, especially large ones like Seabrook and Pilgrim, are too large and too unreliable to contribute much to the load carrying capacity of the system, and could be replaced by a much smaller set of peakers (perhaps 50% to

60%) without decreasing the reliability of the system. Peakers, such as cumbustion turbines, if brought on line in the 1980's, would probably cost no more than 10% of the cost of contemporaneous nuclear units.

- Q: Why would any utility ever have planned a nuclear unit, if not to meet peak?
- Nuclear, and all other base load capacity, is constructed to A: provide more economical power than would be available from capacity which is less expensive to construct. Coal and nuclear plants are less expensive to operate⁴¹ than oil-fired steam plants, especially thermal peaking units. When Seabrook and Pilgrim were undertaken, the utilities expected that their total costs would be less than those of new fossil plants. After 1974, the utilities generally expected that the nuclear units would be less expensive than just the fuel cost at existing oil plants. Therefore, any valid rationale for buying or continuing to own nuclear generation could not have been a need for capacity (since less expensive options were available), and must have been an economic comparison, such as those presented in Section 7 of this testimony and in Section 6 of my testimony in 84-120. If the nuclear units were cheap enough, they would have been desirable at zero load growth and 100% reserve margins, while if they were

41. Nuclear non-fuel O&M expenses are escalating rapidly, so this statement may not be true in 10 or 15 years.

- 117 -

expensive enough, they would not have been desirable at 7% load growth rates.

- Q: Why then do you discuss load forecasts?
- The Maine utilities have offered their own and NEPOOL's load A: forecasts from the 1970's as partial justification for their decisions to purchase Seabrook (and for CMP, Pilgrim 2) shares. As I explained above, the connection between "needing" some capacity and purchasing nuclear capacity is extremely tenuous, even if the "need" is accepted. Nonetheless, to the extent that load growth results in greater use of existing high-fuel cost generation, and to the extent that it requires the addition of some new capacity (however inexpensive) to maintain reliability, it increases the economic justification of baseload capacity. In addition, both MPS and BHE seem to believe that their load growth threatened to leave them scrambling for capacity in a tight market (because the NEPOOL forecast consistently overstated growth in the region, the tightness of future markets was always overstated), with only limited options for adding new capacity on their own systems. Therefore, it seems appropriate to at least quickly review the utility forecasts in this period.

9.1 - The Load Forecasts of MPS

- Q: Please describe the load forecasts of MPS in the late 1970's.
- A: Table 9.1 lists MPS's load forecasts and actual peak loads for the 1970's and 1980's, and Figure 9.1 graphs the patterns of changes in MPS' projections.
- Q: How sophisticated were the forecasts on which MPS relied in making its decision to purchase a portion of Seabrook?
- A: From the documents provided by MPS, it appears that the forecasts were based on little more than trending and judgement. There is no explicit treatment of conservation, including price effects, nor is there any explicit consideration of any other economic measure, such as personal income, value added, gross national product, or employment, to name a few which might be used.
- Q: Given the size of MPS, what other techniques were applicable?
- A: The were at least two other approaches available to MPS. One was to rely on economic projections for its service territory and for the products produced there, modified by price elasticities, foreseeable conservation effects, and so on. Unlike many utilities with loads in its range, MPS serves a geographically large and contiguous area, and its load is

- 119 -

less apt to be affected by which side of the town line major industrial and commercial customers decide to locate on. However, MPS is still rather small and not well diversified, so even fairly sophisticated forecasts can easily be greatly in error, due to unforeseen events in particular industries or firms. Therefore, the second approach, of a regional or diversified forecast, might also have been appealing to MPS. The logical region for forecasting would have been Maine; alternatively, MPS might have joined with other small New England utilities in a collective forecast. Such cooperative efforts spread out the costs of developing reasonable models, take advantage of the law of averages (the average of several partially independent random variables will be more stable than the individual variables), and allow for sharing the risks of over- and under-capacity. If the second strategy did not work out, the first approach (which may be simply stated as "model well") could still have improved MPS' forecasting considerably.

Q: How much reliance should MPS have placed on its forecasts?

A: Very little. The methodology was not much better than speculation, and the results should have been treated accordingly.

- 120 -

9.2 - The Load Forecasts of BHE

- Q: Please describe the load forecasts of BHE in the late 1970's.
- A: Table 9.2 lists BHE's load forecasts and actual peak loads for the 1970's and 1980's, and Figure 9.2 graphs the patterns of changes in BHE' projections.
- Q: How sophisticated were the forecasts on which BHE relied in making its decision to purchase a portion of Seabrook?
- They were based on a much better structured forecasting model A: than those of MPS, if it is proper to refer to MPS having had a model at all. The 1976 forecast (Exhibit Lee-6) was fairly sophisticated for a utility of BHE's size, and considered a number of causal factors, although appliance and equipment stocks and efficiencies were not dealt with directly, and the industrial forecast depends on customer short-term projections and trending, rather than macro-economic forces (such as national paper production projections). The major failing in this forecast, however, is its decision to discount recent experience: growth trends are based on the 1966-75 experience, and were therefore over-stated for the post-embargo world of high, rising, and uncertain energy prices. Considering that government energy use per capita had been falling since 1970, projecting that measure to suddenly increase was unjustified. Similarly, it defied

- 121 -

reason to assume that space heating penetration would double and that these new customers would use as much energy as previous customers. Price elasticities and the delayed effects of the oil price increase of 1974 were not addressed explicitly.

- Q: Did the 1978 forecast (Exhibit Lee-10) represent a significant improvement?
- A: The model structure is much more complex, and allows for the inclusion of many more relevant factors, including appliance and equipment efficiencies and a host of economic considerations. This was again a good modeling effort for its time, and for the size of the utility. Unfortunately, the BHE model was an adaptation of the NEPOOL/Battelle model, which was seriously flawed. Battelle's contributions to this model included numerous logical and practical errors, particularly in the economic-demographic module, and many of the assumptions about conservation understated the likely effects. A detailed critique of the NEPOOL model, from my 1979 testimony before the NRC, is attached as Appendix D to this testimony, so I will not repeat the recitation of the problems discussed there. Since my critique, NEPOOL has apparently abandoned or modified many of the features to which I objected: unfortunately, NEPOOL has not (so far as I know) released a definitive description of its model since the version I reviewed.

- 122 -

Q: Should BHE have recognized the shortcomings in the NEPOOL model?

ŧ.

- A: I think that it should have at least noted that the long-run elasticities used by NEPOOL were much lower than those indicated by many independent studies, and that the short-run elasticities were very high (at least given the values assumed for the long run). The combination of these assumptions resulted in the conclusion that most of the adaptation to the 1974 price increases had already occurred by 1978, while in fact, there were major adjustments in appliances, equipment, lighting, and thermal efficiency still to be completed.
- Q: Was reliance on these forecasts for power supply planning purposes prudent?
- A: Preparation of the forecasts, as part of a continuing process of refining and improving BHE's forecasting ability, was certainly prudent. BHE should only have used the results for high-growth sensitivity cases (if it used them at all), sincee they were clearly overstated.

- 123 -

9.3 - The Load Forecasts of CMP

È,

- Q: Please describe the load forecasts of CMP in the late 1970's.
- A: Table 9.3 lists CMP's load forecasts and actual peak loads for the 1970's and 1980's, and Figure 9.3 graphs the patterns of changes in CMP' projections.
- Q: How sophisticated were the forecasts on which CMP relied in making its decision to purchase a portion of Seabrook?
- A: Contemporaneous reviews of these forecasts are available, so we can evaluate them without the benefit of hindsight. CMP's forecast of late 1977, which became part of the NEPOOL 1978 forecast, was one of the utility forecasts I reviewed in MDPU 19494, in early 1979. That review is reproduced as Appendix C to this testimony. The methodology at that time consisted mostly of time trends, with large (and sometimes unprecedented) increases in energy intensity projected in virtually every sector. The approach was a little more detailed than BHE's 1976 forecast, but the projections appear to have been quite arbitrary, and the overall result was disappointing for a utility of CMP's size.

The next CMP forecast, from Fall 1978, was reviewed extensively in U3238, by A.D. Little for the Commission Staff, by the Office of Energry Resources and its consultant,

- 124 -

and ultimately by the Commission. I will not attempt to repeat that level of review, but will simply note a few of the forecast's salient characteristics. CMP relied on some of the weakest portions of the NEPOOL model to project the economic and demographic parameters which drive consumption in the various sectors. Price elasticities were neglected entirely. Other conservation effects were reflected to a modest extent in the residential sector (appliance efficiencies were only assumed to improve by the proposed FEA standards and no changes in usage patterns were assumed) and were not explicitly addressed elsewhere. The Commission's decision in U3238 addresses many of the other problems in CMP's forecast, and I generally agree with the Commission's conclusions.

- Q: What reliance should CMP have placed on its forecasts in determining whether to purchase more Seabrook capacity and whether to support continued construction of Unit 2?
- A: Like BHE, CMP could only conclude that its forecasts represented a "high growth" scenario that was unlikely to occur. Such a scenario might be useful for sensitivity analysis, but not as a most likely or best estimate. Indeed, as the Commission noted

. . . the projection of future power demand cannot be viewed by this Commisssion as simply a process of predicting a predetermined, or wholly extrinsically determined, outcome. The policy and rate decisions of this Commission and of the Company can influeence that growth in both energy

- 125 -

consumption and peak demand. Obviously, these matters are by no means entirely within the control of the petitioner and this agency, but future growth can be managed and limited to some extent. (U3238, page 45)

Thus, the CMP forecast results might define the maximum growth case for which the company should prepare contingency conservation plans.⁴² In any case, CMP should have known that its forecasts were overstated, and should not have relied on them as the basis for decisions to buy or continue with Seabrook.

42. By 1980, CMP recognized that lower growth was beneficial for the utility: unfortunately, it had already increased its Seabrook commitment in the anticipation (or hope) of higher growth.

9.4 - The Load Forecasts of NEPOOL

- Q: How are the NEPOOL load forecast relevant to this proceeding?
- A: For all of the utilities, the level of their concern about the future availiability of capacity should have depended to some extent on the NEPOOL load and capacity situation. So long as NEPOOL has large reserve margins, there are opportunities for the purchase of capacity entitlements or firm power from other utilities, and supply deficits on any particular system would be less threatening. This is particularly true for MPS, due to its small size (a modest excess of capacity on the BECo or NU systems, for example, would accomodate several years of MPS load growth), and for BHE, due both to its size and to its reliance on purchased power throughout the 1970's.

Q: How reliable were the NEPOOL forecasts in this period?

là sa

A: Through 1978, the NEPOOL forecast was simply the sum of the utility forecasts, adjusted for diversity and 345 kV losses. All the Maine utilities should have been aware that their own forecasts were overstated in the post-embargo period, and should have anticipated that other utilities' forecasts (and hence the NEPOOL projection) were similar optimistic. Unfortunately, even CMP apparently had not reviewed the

- 127 -

forecasts of other NEPOOL members (U3238 Tr. 293-294), so it might not have realized just how badly overstated the forecasts of some members (such as PSNH) were.

In 1979, NEPOOL introduced its own forecasting model. As I noted previously, and as discussed in Appendix D, this model contained many errors and overstatements of demand, many of which should have been obvious to anyone familiar with load forecasting.

- Q: How should the utilities have used the NEPOOL forecasts in this period?
- A: They should have treated the NEPOOL forecasts much as they should have treated their own forecasts: as overestimates of the likely need for power, and thus underestimates of the amount of power available from existing and committed plants, after taking into account such adjustments as the cancelation of all nuclear plants without construction permits and the indefinite suspension of Seabrook.

10 - CONCLUSIONS AND RECOMMENDATIONS

Q: Please summarize the conclusions of the previous sections. A: We may conclude that

- Nuclear cost estimates have never been reliable, either before or after the issuance of a construction permit.
- Nuclear power plants have consistently failed to meet their construction schedules.
- Seabrook, and particularly the second unit, had problems at least equal to those of the industry as a whole.
- Seabrook 2 could not have been built for any of the cost estimates PSNH produced, or been completed on the PSNH schedules, and these facts should have been apparent to PSNH and most of the joint owners.
- It was foreseeable throughout the Seabrook 2 construction period that the unit would impose tremendous financial strain on PSNH and other joint owners, and in fact it has.
- Seabrook 2 was not cost-competitive with new coal construction as far back as 1976.

- 129 -

- Had Seabrook 2 been completed, it would have operated at much lower capacity factors than assumed in the utility cost-benefit analyses.

Thus, the termination of construction at Seabrook 2 was inevitable, desirable, and long past due when it finally occurred. Utilities have never known the scope of nuclear projects until they are completed, or actually until they are retired. This fact was clear to me in 1979, and it should have been clear much earlier to PSNH (which had access to data I have only recently seen, and probably much which I still have not seen); and it should have been clear to the Maine utilities, as well.

- Q: What are your conclusions regarding the prudence of the major decisions to participate in, and attempt to construct, Seabrook 2?
- A: Reviewing the preceding information and analysis, I conclude that a reasonable observer, with access to the information reasonably available to the Maine utilities would have concluded:
 - 1. As a general matter, participating in a nuclear power plant construction program may well have been prudent in 1972, so long as it was accompanied by a commitment to continued monitoring of developments in the industry and in the particular project, and with the knowledge

- 130 -

that nuclear cost projections were highly unreliable.

- 2. Continuing direct expenditures on Seabrook 2 past 1976 was extremely questionable. Other than minimal investment necessary to allow the tie-in of Unit 2 to the common facilities, no further expenditures should have been undertaken without a thorough and candid assessment of the costs, benefits, and risks of continued expenditures. Such an analysis might well have indicated that cancelation of the plant was economically and financially justified. If the unit were not canceled as a result of the analysis, further construction should at least have been deferred until the completion of Unit 1, at which time the cost and schedule for Unit 2 could have been determined with greater accuracy, and the owners might actually have been able to afford to build the second unit. In any case, in the absence of further study and justification, continued avoidable investments in Seabrook 2 were indefensible, after 1976.
- 3. By the end of 1978, the accumulation of bad news had progressed to the point that cancelation was very likely to be preferred in any honest appraisal of the Seabrook 2 project. Even so, there were limited costs involved in maintaining the option to resume Seabrook 2 construction in the mid-1980's, when Seabrook 1 was

- 131 -

likely to be complete, and it is possible that a prudent assessment would have found that preservation of Unit 2 assets remained viable.

- 4. Completion of Seabrook 2 was probably impossible, and certainly undesirable, by the middle of 1980, given the financial condition of the owners, and the rapidly rising cost of nuclear plants. As soon after the Three Mile Island accident as the participants' reaction time would allow (certainly by early in 1980), cancelation (or at least mothballing) of Unit 2 was absolutely and certainly required.
- 5. By the end of 1982, it may already have been too late to save either unit at Seabrook. However, prompt cancelation of the second unit would have improved the financial condition of those utilities who were allowed to recover part of the cost, and reduced the exposure for all the participants. No other course of action could have been defensible by that point.
- Q: How would these conclusions have affected the behavior of the Maine utilities and PSNH, had they been acting prudently?
- A: In 1972, and throughout the early 1970's, all utilities with nuclear investments should have been monitoring the evolution of the numerous problems of the nuclear industry. By 1976, PSNH, CMP, and probably MPS should have been carefully and

- 132 -

critically re-examining the economics, and the financial viability, of the project, with the knowledge that the cost and schedule estimates prepared by UE&C and PSNH were almost certain to be over-optimistic. If PSNH were not willing to undertake such studies, CMP should have performed them on its own, or with other joint owners, or attempted to force PSNH to take the problems seriously. MPS and BHE should have refused to buy into the plant in the absence of such analysis. Had those studies been performed, the plant would probably have been mothballed; at the very least, the rate of expenditures would have preserved the investment to that date, and allowed later restart.

By 1978, CMP, BHE, and MPS should have been publicly opposing continuation of Seabrook 2, if PSNH had not halted cash expenditures or actually canceled the unit. PSNH should have been carefully considering any additional expenditures, and should almost certainly have stopped direct construction by that time.

By early 1980, Seabrook 2 should have been canceled and all three Maine utilities should have been advocating cancelation. CMP and BHE should have refused to complete their purchase of further Seabrook shares from PSNH until Seabrook 2 construction had stopped, and should not have purchased the valueless Seabrook 2 assets.

- Q: If PSNH had acted as you suggest they should have, would even PSNH and its customers be better off today than they are?
- A: Yes. The losses suffered by both PSNH's ratepayers and its shareholders would have been limited. Had PSNH not wasted its limited resources on Unit 2, the first unit at Seabrook might still be under full construction, with a reasonable chance of completion in the middle of this decade. In addition, the several other New England utilities (and their customers) which are joint owners in the Seabrook project would be better off today, due to the smaller direct loss on Seabrook 2, and to the improved construction conditions for Unit 1.
- Q: How would you recommend that this Commission treat the Maine utilities' investment in Seabrook 2 for ratemaking purposes?

Ň

A: I would recommend that the Commission disallow all costs beyond mid-1980, including the entire cost of the increase in the CMP and BHE shares of the second unit. This is based on my conclusion that an honest appraisal of the project at that date would probably have recommended cancelation at this date. Since the Maine utilities did not conduct any such inquiry (nor attempt to force PSNH to conduct one), their investment beyond that date appears to be totally due to their imprudence.

My other recommendations are more limited or conditional. First, I believe that the Commission should determine whether it wishes to disallow costs after the time at which the utilities' behavior became imprudent, or only at the time when prudent behavior would have resulted in a different substantive outcome. This is equivalent to the question of whether a driver is imprudent as soon as he falls asleep behind the wheel, or whether that behavior only becomes imprudent when the car hits someone. If the Commission chooses the first standard, then none of the Seabrook 2 investments should be recovered from ratepayers.

Second, if the Commission does allow recovery of any costs prior to mid-1980, that recovery should not include any direct costs for 1977 through mid-1980, since the second unit should not have been under active construction at that time. It is my understanding that all common costs are now assigned (or will be reassigned) to Unit 1, presumably including the common costs which were necessary to keep the Unit 2 option open.

Third, if the Commission wishes to allow partial recovery of any costs, to reflect the uncertainty which remains about the

- 135 -

appropriate course of action for a responsible utility at any particular point, I suggest that the Commission review the evidence and allow a fraction of the disputed costs, proportional to the Commission's assessment of the probability that an unbiased review by a prudent utility at that particular time would have resulted in the expenditure in question. For example, if the Commission agrees with me that CMP did not perform the analyses it should have in 1976, but believes that there was a 50% chance that a prudent appraisal would have recommended continued investment in Unit 2 at that time, it might allow CMP to collect half of the direct costs for 1977 and 1978. The corresponding percentages would be lower for the MPS and BHE purchases of Seabrook in 1977-78: new investment should have been conditional on a higher level of confidence then continued ownership.

Finally, the Commission must determine whether any of the purchases of Seabrook shares, after CMP's initial commitment in the early 1970's, were prudent. I believe that I have demonstrated that the status of the nuclear industry, and of Seabrook, rendered imprudent all the purchases from 1977 onwards. However, this is a somewhat finer judgment than my major conclusion, that all post-1980 expenditures (and all post-1976 directs) were imprudent.

Q: Do you have any opinion as to whether the Maine utilities,

- 136 -

PSNH or UE&C should bear the portion of the costs which are not recovered from the Maine utilities' ratepayers?

- A: Not really. As I noted above, this question hinges on the nature of PSNH's representations and responsibilities to the Maine utilities, and the relationship between PSNH and UE&C. I do not believe that this potential dispute between the utilities and their contractors should in any way affect the Commission's decision in this proceeding, however, since the only issue here is whether the Maine utilities' customers should be paying these costs.
- Q: Does this conclude your testimony?

A: Yes.

BIBLIOGRAPHY

100 - 100 A

- Atomic Energy Commission, The Nuclear Industry, annual, 1966-74 (published by ERDA in 1974).
- Bennett RR, and Kettler DJ, "Dramatic Changes in the Costs of Nuclear and Fossil-Fueled Plants", Ebasco Services Inc., September 1978.
- Blake C, Cox D, and Fraize W, Analysis of Projected vs. Actual Costs for Nuclear and Coál-Fired Power Plants, prepared by MITRE for ERDA (Contract E(49-18)-2453), September 1976.
- Brandfon WW, "The Economics of Power Generation", Sargent & Lundy Engineers, presented before Atomic Industrial Forum, Chicago, June 24, 1976.
- 5. Budwani RN, "Power Plant Capital Cost Analysis", Power Engineering, May 1980, pp. 62-70.
- 6. Bupp, IC, Derian, J-C, Donsimoni, M-P, and Treitel, R, <u>Trends in Light Water Reactor Capital Costs in the United States: Causes and Consequences, Center for Policy</u> Alternatives, Massachusetts Institute of Technology, CPA 74-8, December 1974. Summarized in Bupp, <u>et al.</u>, "The Economics of Nuclear Power", Technology Review, February 1975, pp. 15-25.
- 7. Detroit Edison, A History of Enrico Fermi Atomic Power Plant Unit 2, August 1983.
- Dittmar JE, and Ward LA, Testimony on Behalf of Central Maine Power Company (Maine PUC 84-120) and on Behalf of Maine Public Service (Maine PUC 84-80), filed August 31, 1984.
- Easterling, RG, <u>Statistical Analysis of Power Plant</u> <u>Capacity Factors</u>(Albuquerque, NM: Sandia Laboratories) 1979.
- 10. Easterling RG, <u>Statistical Analysis of Power Plant Capacity</u> <u>Factors Through 1979</u>, (Albuquerque, NM: Sandia Laboratories), April, 1981.
- 11. Electrical World, "Nuclear Schedules Face Uncertainty", October 15, 1971, pp. 40-41.

- Electrical World, "Nuclear Survey: Lead times stabilizing", October 15, 1972, pp. 76-73.
- 13. **Electrical World**, "Nuclear Survey: A Record Year", October 15, 1973, pp. 63-70.
- 14. Electrical World, "Nuclear Survey: Orders and Cancellations", October 15, 1974, pp. 41-50.
- 15. Electrical World, "Nuclear Survey: Cancellations and Delays", October 15, 1975, pp. 35-44.
- 16. Electrical World, "Nuclear Survey: Market Still Depressed", January 15, 1977, pp. 35-44.
- 17. Electrical World, "1978 Nuclear Plant Survey: Market Down, But Not Out", January 15, 1978, pp. 39-49.
- 18. Electrical World, "1979 Nuclear Plant Survey: Attrition Besets Nuclear Market", January 15, 1979, pp. 71-80.
- 19. Electrical World, "1980 Nuclear Plant Survey: No Reactors Sold; More Cancellations", January 15, 1980, pp. 51-61.
- 20. Energy Information Administration, Steam-Electric Plant Construction Cost and Annual Production Expenses, annual since 1975.
- 21. Federal Power Commission, National Power Survey, 1970.
- 22. Federal Power Commission, Steam-Electric Plant Construction Cost and Annual Production Expenses, annual to 1974.
- 23. Jacobson NH, "Buyers Guide Seventyseven: Maturing in a Lean Economy", Nuclear News, Mid-February 1977.
- 24. Joskow, PL, and Baughman ML, "The Future of the U.S. Nuclear Energy Industry", Bell Journal of Economics, Spring 1976, pp. 3-32.
- 25. Komanoff C, <u>Nuclear Plant Performance</u>, <u>Update 2</u>, (New York, NY: Komanoff Energy Associates), 1978.
- 26. Komanoff C, Power Plant Cost Escalation, (New York, NY: Komanoff Energy Associates), 1981.
- 27. McTague PJ, Davidson GJ, Bredin RM, and Herman AA, "The Evolution of Nuclear Plant Costs," Nuclear News, February 1972, pp. 31-35.
- 28. Meyer MB, "Nuclear Power Plant Cost Underestimation: Mechanisms and Corrections," Public Utilities Fortnightly,

February 16, 1974.

- 29. Mooz WE, Cost Analysis of Light Water Reactor Power Plants, RAND Corporation for DOE, R-2304-DOE, June 1978.
- 30. Mooz WE, A Second Cost Analysis of Light Water Reactor Power Plants, Rand Corporation Report R-2504-RC, December, 1979.
- 31. NEPLAN, "Summary of Generation Task Force Long Range Study Assumptions", NEPLAN & GTF, January 1976 (revised, October 1977).
- 32. NEPLAN, "Summary of Generation Task Force Long Range Study Assumptions", NEPLAN & GTF, March 1982.
- 33. NEPOOL Planning Committee, "New England Base Load Generation Study 1980/81 to 2000/01", February 1977.
- 34. NEPOOL Planning Committee, "A Reliability Evaluation of Maintenance Requirements and External Tie Benefits for New England", July 1979.
- 35. Nuclear Industry, "Outlook for 1977: New Load Demands Darken A-E's View", January 1977a, pp. 12-14.
- 36. Nuclear Industry, "Around Utilities This Month", April 1977b, p. 18.
- 37. Nuclear News, "Utility Abandons Plans for Two-Unit Station", February 1976, p. 35.
- 38. Olds FC, "Nuclear Power Growth Pains Persist", Power Engineering, November 1973, pp. 54-61.
- 39. Olds FC, "Power Plant Capital Costs Going Out of Sight", Power Engineering, August 1974, pp. 36-43.
- 40. Olds FC, "What Really Happened in 1974 to Nuclear Growth Schedules and Schedule Slippage", Power Engineering, April 1975, pp. 49-51.
- 41. Olds FC, "What Happened to the Nuclear Program in 1975", Power Engineering, April 1976, pp. 83-85.
- 42. Olds FC, "Regulatory Growth: Impact on Power Plant Planning and Construction", Power Engineering, May 1977, pp. 40-47.
- 43. Olds FC, "What Happened to the Nuclear Program in 1977", Power Engineering, April 1978, pp. 62-65.

- 44. Perl LJ, "Estimated Costs of Coal and Nuclear Generation", National Economic Research Associates, December 1978.
- 45. Roe KA, and Young WH, "Trends in Capital Costs of Generating Plants," Power Engineering, June 1972, pp. 40-43.
- 46. United Illuminating Company, "Joint Testimony of JF Cobey, JF Crowe, RL Fiscus, and RJ Grossi", Connecticut Department of Public Utility Control, Docket No. 84-06-17, August 1, 1984, page 3.

• *

TABLE 1.1: PILGRIM 2 COST AND SCHEDULE ESTIMATES

Estimate Date	Cost Estimate (\$ million)	Commercial Operation Date	Projected CP Issue Date
	میں		
Feb-72	402	Nov-78	Jan-74
Apr-73	655	Aug-8Ø	Aug-75
Mar-75	1221	Oct-82	Oct-76
Oct-76	1396	Mar-84	Jul-77
May-78	1895	Jun-85	Mar-79
Mar-79	1895	Dec-85	Mar-79
May-80	3220	May-89	Ju1-79
Jun-8Ø	3515	Mar-90	?
Sep-81	3975	Mar-90	?

Sources: Montaup Electric Company, Docket No. ER81-749-000 and ER82-325-000, Exh. (MEC-701) Start of Construction from: EIA-254 Progress Reports

· · · · · · · · · ·

 $^{(\}omega^{(1)} \leftarrow \gamma_{1}) \qquad ((\omega^{(1)} + \gamma_{2}))_{1 \leq i \leq j \leq k}$

TABLE 2.1: COMPLETED NON-TURNKEY NUCLEAR UNITS, with COD before December, 1972

	Ac	ActualEstimates		85	YearsNominal				ž	
Unit Name	Cost	COD	Date of Est.	Cost	CDD	to CDD	Cost Ratio	Myopia	Duration Ratio	Comp
Nine Mile Point 1	162	Dec-69	Mar-64	68	Nov-68	4.67	2.39	1.205	1.232	0.0
Palisades	147	Dec-71	Nar-68	89	May-70	2.17	1.65	1.259	1.731	31.0
Vermont Yankee	184	Nov-72	Sep-66	88	8ct-70	4.08	2.10	1.199	1.510	0
Pilgrim 1	239	Dec-72	Jul -65	70	Jul-71	6.00	3.42	1.227	1.236	
Turkey Point 3	107	Dec-72	Sep-69	99	Jun-71 [1	1 1.75	1.10	1.055	1.861	52.2
Maine Yankee	217	Dec-72	Sep-67	100	Hay-72	4.67	2.19	1.183	1.125	
Surry 1	247	Dec-72	Dec-66	130	Mar-71	4.25	1.90	1.163	1.412	0.1
AVERAGE						3.94	2.11	1.184	1.444	

7

NUMBER of DATAPOINTS 7 7 7

Notes: [1] From AEC. Month not given, June assumed.

TABLE 2.2: COMPLETED TURNKEY AND DEMONSTRATION UNITS, with COD before 12/1972

			Fi r	'st Avi	ailable	- Est	•			
	Act	uals	E	stieat	25	Years				-
			Date of			to	Cost	Myopia	Duration	7
Unit Name	Cost	COD	Est.	Cost	COD	COD	Ratio		Katio	Comp
	-14" May May 2014 14					~~~~	*****			
Indian Point 1 [1] 126	Sep-62	Jun-60	68	Jan-62	1.58	1.86	1.478	1.421	78
Humboldt [1]	24	Aug-63	Jun-60	3	Oct-62	2.33	8.16	2.458	1.357	0.0
Oyster Creek 1	90	Dec-69	Jun-64	59	0ct-67	3.33	1.52	1.135	1.650	0.0
Ginna	82	Jul -70	Dec-65	64	Jun-69	3.50	1.30	1.078	1.310	0.0
Dresden 2 ±	83	Jul-70	Mar-66	79 [23Feb-69	2.92	1.05	1.016	1.486	6.0
Point Beach I	74	Dec-70	Jun-66	61	Apr-70	3.83	1.21	1.052	1.174	0.0
Millstone 1	97	Nar-71	Dec-65	81 [2]Aug-69	3.67	1,20	1.050	1.432	0.0
Robinson 2	78	Mar-71	Jun-66	76	Hay-70	3.92	1.02	1.005	1,213	0.0
Monticello	105	Jun-71	Jun-66	74 [23May-70	3.92	1.42	1.093	1.277	0.0
Dresden 3	104	Nov-71	Mar -66	81 1	[2]Feb-70	3.92	1.28	1.065	1,447	2.0
Point Beach 2	71	Oct-72	Mar-67	54	Apr-71	4.08	1.32	1.071	1.367	0.0
ALL UNITS AVERAGE # of Datapoints						3.36 11	1.94 11	1.227	1.376 11	
ALL UNITS EXCEPT Indian Pt 1 & H	umboldt					7 10	1 72	1 66	1 77	
HVERHUE # of Datapoints						s. od 9	1.28 9	1.va 9	1. <i>31</i> 9	

Notes: [1] Demonstration units

Ĵ,

[2] Cost estimate as of 9/66

Constructor=UE&C

TABLE 2.3: COST GROWTH IN UNITS PLANNED OR UNDER CONSTRUCTION BY DECEMBER, 1972

Ĭĺ

Į

Contraction of the second

1 contraction

	E	Estimates		Years	M	Cost	
Unit Name	Date of	Cost	con	to con	Years Stansad	Srowin Rate	k atalaga?
UNIL MORE	CJL. 					NBLE	
Arkansas l	Dec-67	132	Dec-72	5.00			0.0
	Sep-72	185	Oct-73	1.08	4.76	7.4%	86.8
Arkansas 2	Dec-70	183	Oct-75	4.83			0.0
	Sep-72	230	Oct-76	4.08	1.75	13.9%	6.9
Duane Arnold	Jun-68	103	Dec-73	5.50			0.0
	Sep-72	192	Jan-74	1.33	4.25	15.8%	69.0
Calvert Cliffs 1	Jun-67	118	Jan-73	5.58			0.0
	Sep-72	250	Feb-74	1.42	5.26	15.3%	72.0
Calvert Cliffs 2	Jun-67	105	Jan-74	6.58			0.0
	Sep-72	204	Jan-75	2.33	5.26	13.5%	56.0
Davis-Besse 1	Dec-68	180	0ec-74	6.00			0.0
	Dec-72	349	Hay-75	2.42	4.00	18.02	40.0
Farley 1	Sep-69	164	Apr-75	5.58			0.0
	Sep-71	259	Apr-75	3.58	2.00	25.71	6.0
Farley 2	Sep-70	183	Apr-77	6.58			0.0
	Sep-71	233	Apr-77	5,58	1.00	27.32	0.0
Hetch 1	Nar -67	151	Jun-73	4.25			1.5
	Dec-72	282	Apr-74	1.33	3.76	18.12	69.0
Hatch 2	Jun-70	189	NA	NA			NA
	Bec-/2	330	Apr-78	5.33	2.50	24,9%	11.0
filistone Z	Dec-6/	150	Apr-/4	5.33			9.9
.	Sep-72	282	Apr-/4	1.58	4./6	14.2%	49.0
Uconee I	Sep-70	107	321-/1	0.83	D 05	(A 78	80.0
0	Bec-/2	137	388~/3	V. DV	2.23	10.74	44.3 FA A
uconee 2	380-7V	107	481-72 E-2 77	1.80	1 66	05 74	30.0
P 7	360-/1 C 70	137	reo~/J	1.42	1.00	23.7%	/1.V DE 0
UCDREP 3	360-70 Den 71	107	881-75 New 77	2.83	1 00	75 7¥	13.0
Donah Dattas 7	324-11 Dec-66	137	NDV-13 NA	2+17 MA	1.00	, 1J.14	43.0
reath outlog I	22C-00	100	85-73 000-73	1 25	5 50	10 57	77 0
Deach Dotton 7	Nor-LL	175	аер-та ма	د ۲۰۲۲ ۱۴۵	3.30	10.3%	12.0 NA
LEPTH DALLOS 2	Jun-72	714	960-74	חה כי כי בי	5 50	19 47	50 N
Rancha Sera	Der-47	174	Hav-73	5.47	0100	101 /8	0.0
Hancho Gero	Sen-77	300	Feb-74	1.42	A.74	18.57	78.0
San Anntre 2	Bar-70	189	Jun-76	6.25		10104	0.0
	Dec-72	360	Oct-78	5.84	2.76	24.32	0.0
Troian	Dec-68	196	Sep-74	5.75			0.0
// _ j =	Dec-72	284	Jul-75	2.58	4.00	9.7%	57.0
Turkey Point 4	Nar -70	80	NA	NA			66.7
	Dec-72	106	Jul-73	0.58	2.76	10.72	99.0
Grand Gulf 1	Jun-72	600	0ec-78	6.50			0
	Dec-72	656	Jun-79	6.50	0.50	19.5%	0
Hope Creek 1	Har-70	574	Har-75	5.00			0
·	Dec-72	1139	Hay-79	6.42	2.76	28.2%	0
Limerick 1	Har-70	252	Har-75	5.00			0
•	Dec-72	694	Aug-78	5.87	2.76	44.42	1
Limerick 2	Har-70	223	Har-77	7.00			0
	Dec-72	512	Jan-80	7.08	2.76	35.21	1
Hidland I	Dec-71	277	Hay-77	5,42			2
	Dec-72	383	Feb-79	6.17	1.00	38.11	2
Hidland 2	Dec-71	277	Nay-78	6.42			2
	Dec-72	383	Feb-80	7.17	1.00	38.12	2

TABLE 2.3: COST GROWTH IN UNITS PLANNED OR UNDER CONSTRUCTION BY DECEMBER, 1972

	Es	timate	5	Years		Cost		
	Date of			to	Years	Growth	7	
Unit Name	Est.	Cost	CDD	COD	Elapsed	Rate	Complete	
Salea 2 *	Sep-67	128	May-73	5.66			0.0	
	Dec-72	425	Mar-76	3.25	5.25	25.7%	NA	
Sequoyah 1	Sep-68	161	Oct-73	5.08			0.0	
	Dec-72	225	Apr-75	2.33	4.25	8.12	45.0	
North Anna 2	Sep-70	184	Mar-75	4.50			NA	
	Dec-72	227	Jul-75	2.58	2,25	9.87	28.2	
Three Mile 1, 2 ±	Aug-69	214	Hay-74	4.75			NA	
	Aug-72	465	Nay-76	3.75	3.00	29.5%	25.0	
Cook 2	Dec-67	235	Apr-72	4.33			NA	
	Sep-70	339	Mar-74	3.50	2.75	14.2%	19.0	
North Anna 1	Har -69	185	Har-74	5.00			0.0	
	Dec-72	407	Dec-74	2.00	3.76	23.4%	55.0	
Salem 1 ±	Sep-66	139	Nay-71	4.70			0.0	
	Dec-72	425	Har-75	2.25	6.25	19.6%	53.0	
Browns Ferry 3	Nar-68	124	Oct-70	2.58		•	12.0	
	Sep-72	149	Oct-74	2.08	4.51	4.17		
Crystal River 3	Mar-67	110	Apr -72	5.09			0.0	
	Dec-72	283	Nov-74	1.92	5.76	17.8%	63.5	
Brunswick 1 ##	Dec-70	194	Nar-76	5.25			4.0	
	Dec-72	214	Bec-75	3.00	2.00	5.0%	42.0	
HNP 2	Har−71	187	Sep-77	6.50			0	
	Sep-72	374	Sep-77	5.00	1.51	58.4%	NA	
AVERAGES								
Simple					2,86	20.8%		
Weighted by Year	.2					18.6%		
NUMBER OF DATAPOINT	5:				63	63		

Notes: + Constructor=UE&C

1

Architect/Engineer=UE&C

				Years			
	Date of	Est	iaated	to	Years	Progress	y,
Unit Name	Estimate	Cost	COD	COD	Elapsed	Ratio	Complete
Brunness 1	Bee-47	+20	n77	E 01		~~~~~~	 ^ ^
ni kalisas i	Sep-72	132	Det-72	1 40		אם הע	0.0
Arkanese 7	Nor-70	101	022-73	1.VG A QA	4./3	01.JA	0,00
TI KANJAS L	Sen-72	200	022-73 0r+_74	7.07 1 AQ	1 75	17 04	ν.ν ε α
Duana Arnold	Jun-19	200	0CC-/0 Bor-73	4.00	1.73	41.04	. g.7 0.0
badhe (n nora	500 00 500-77	100	Jan-74	1 77	1 25	99 07	10.0
Calvert Cliffe 1	Jun-47	119	Jan-73	5,50	7.13	70.03	01.0
	Sen-77	250	Sob-74	1 17	5 24	79 AY	72 0
Calvert Cliffs 7	Jun-47	105	320-74	1.42 5 59	4,20	11114	0.0
	Sen-77	704	Jan-75	2.33	5,25	81.07	56.0
Davis-Resse I	Dec -68	180	0er-74	6.00	0120	01104	0.0
	Dec-72	349	Nav-75	2.41	4,00	89.71	40.0
Farley 1	Sep-69	164	Apr-75	5.58		U /1/2	0.0
	Sep-71	259	Apr-75	3.58	2.00	100.02	6.0
Farley 2	Sep-70	183	Apr -77	6.59			0.0
	Sep-71	233	Apr -77	5.59	1.00	100.02	0.0
Hatch 1	Jun-68	NA	Jun-73	5.00			0.0
	Dec-72	282	Apr-74	1.33	4.50	81,5%	69.0
Millstone 2	Dec-67	150	Apr-74	6.34			0.0
	Sep-72	282	Apr -74	1.58	4.76	100.0%	49.0
Oconee 1	Sep-70	107	Jul-71	0.83			80.0
	Dec-72	137	Jun-73	0.50	2.25	14.7%	99.5
Oconee 2	Sep-70	109	Jul -72	1.83			50.0
	Sep-71	137	Feb-73	1.42	1.00	41.1%	71.0
Oconee 3	Sep-70	109	Jul -73	2.83			25.0
	Sep-71	137	Nov-73	2.17	1.00	66.3%	43.0
Peach Bottom 2	Nar -68	163	Har-71	3.00			4.4
	Jun-72	352	Sep-73	1.25	4.25	41.17	72.0
Peach Bottom 3	Nar-68	145	Jan-73	4.84			1.6
	Jun-72	316	Sep-74	2.25	4.25	60.8%	50.0
Rancho Seco	Dec-67	134	May-73	5,42			0.0
_	Sep-72	300	Feb-74	1.42	4.76	84.1%	78.0
Trojan	Dec-68	196	Sep-74	5.75			0.0
.	Dec-72	284	Jul -75	2.58	4.00	79.32	57.0
Turkey Point 4	Sep-71	96	Jul -72	0.93			75.5
	Bec-72	106	Jul-73	0.58	1.25	20.12	99.0
Grand Bult 1	Jun-/2	600	Dec-/8	6.50			0
line - Bruch I	Uec-/2	636	Jun-/4	6.50	0.50	0.51	0
Hope Creek 1	far-/0	574	fiar-/5	5.00	5 7 J	51 7 8	0
***-*	Bec-/2	1134	ñay-/9	6,4Z	2.78	-51.52	0
LIBEFICK 1	nar-/0	232	nar-/3	3.00			U A
linneich 9	986-77 Mar 70	07 9	HUG-/8	3.8/	2.78	-24.22	1
LIMEFICK Z	737~/9 7 77	223	nar-//	7.01	0.7/	7 64	
Mana .	Dec-12	31Z NA	Jan-80	1.07	2.75	-3.02	1
	JUN-00 N==.72	91H 707	588-74 E-5 70	3.4/	* EA		U n
Widland 7	980-72 Max-49	303 มง	F88-17 Fab-75	0+11 1 07	4,00	~11,14	4
HEULANU L	Nor-77	אא 207	res-13 Rob_0A	0.7J 7 17	1 72	_E 9¥	v n
San Anofre 3	Nar-70	100	Jun-74	5 • 11 6 76	T. / Q	-J=24	<u></u> Δ.
0 2110HP HUND	Sen-77	ND ND	Anr-70	4 59	7 51	-13 07	ų ·
Voatle 1	Sen-71	NA	Anr -78	6.59	i vi i	10104	۵
				7 78	1 75	10 04	v A

				Years			
	Date of	Esti	sated	to	Years	Progress	X.
Unit Name	Estigate	Cost	CDD	COD	Elapsed	Ratio	Complete

Vogtle 2	Sep-71	NA	Apr - 79	7.59			0
	Dec-72	NA	Apr-81	8.34	1.25	-60.0%	0
Bailly	Har-67	113	Dec-72	5.76			NA
	Jun-72	244	Jun-77	5.00	5,26	14.47	0
Shearon Harris 3	Jun-71	935	Har-77	5.75			0
	Dec-72	1095	Har-78	5.25	1.50	33.5%	0
HAP 2	Mar-71	187	Sep-77	6.51			0
	Sep-72	374	Sep-77	5.00	1.51	100.02	. NA
Sugger 1	Har-71	234	Jan-77	5.84			0.0
	Ses-72	297	Jan-77	4.34	1,51	100.0%	0.0
San Gnofre 7	Mar-70	187	Jun-76	6.26			0.0
	Der-72	360	8ct-78	5.84	2.76	15.37	0
Susauphanna I	Jun-69	150	27560	6.00			0.0
	Ber-77	703	Nav-79	6.47	3.50	-11.87	0.0
lacalle !	Jun-70	360	0ct-75	5.34			. 0.0
	Sen-77	407	Nec-77	5, 25	2.25	3,82	0.0
Seminush 7	Ber-48	141	8-1-73	4.84	2120		0.0
ocycojan r	Der-77	225	Ber-75	3 00	4.00	45.97	NA
MrGuire 1	Gen-70	179	Nov-75	5 17	14.00	(S) / A	0.0
hebdile i	Nor-72	220	Nov 13 Nov-76	3,17	2 25	95 37	9.0
Solos 7 #	Cen-L7	100	10 70 Xav-77	5 17		00,04	0.0
30159 1 4	Bor-72	120	Mag-73 Mar-74	7.25	5.05	AL 67	NΔ
Convoyat 1	Con-10	123	0e+_77	5.23	Jeij	70.74	0 0
aedonien t	324-00 Nor-72	101	Apr-75	3.00 777	1 75	68 QY	85 G
North Apps 9	Sec-74	104	Hps=75 Nov=75	1.00	7.23	01.02	NA.
ADI (II MIIIA Z	aep=70 N== 70	104	1.1.75	4.30 n En	בר כ	05 04	אוז ר מר
U-+-F 7	DEC-72 Jun-70	111	JUI-73 Ann-72	1,J9 5,00	1.10	03.14	20.1 NA
NALLH Z	0011-70	107	нµ:-/0 Лас-70	J.00 5 77	5 EA	31 0 7	88 11 A
These Wile 7 . 9 r	Vec-12 Aug. 20	226	H91-74	3,33	2.30	11.04	11.V NA
turee mile 1. Z =	Huy-or	114 175	nay-74 Xov-76	4.13	7 00	रर र भ	315 35 ()
C	Hug-72	903 975	nay-/0	3.13	3.00	39.94	23.V NA
COOK I	Dec -07	233 ママロ	HUI - 74	7:07	5 7E	70 44	88 10 A
Maral 1. 5 +	3ep-7V	334	nar-/4 Maa 74	3.3V E AA	2.13	34.4%	17.0
NOFTA HANA 1	nar-07 Nar-77	103	1121 - 74 No 78	3.00	7 71	70 07	0.0 FF A
7-3 + x	Dec - 11	407	96C-/4	2.00	3.10	17.74	33.0
33158 1 #	380-00 Dee 70	194	nay-/1 Mag 75	4./1	1 75	70 7¥	V.V E7 A
D 1 7	98C-12 Nem (D	423	nar-/3	2.23 n En	6.23	37.34	33.0
prowns rerry 3	NBF-68	124	UCT-/V	2.37		11 54	12.0
A	Sep-12	147	UCI-/4	2.08	4.31	11.14	
Crystal Hiver 5		110	HPF-72	3.07		55 IV	V.V
	Dec-/2	283	NOV-/4	1.92	3.76	33.14	63.3
Brunswick 1 ##	Vec-/V	194	nar-/6	3.23	B 00		9.P
	Dec-72	214	Dec-/3	5.00	2.00	112.4%	42.0
Diablo Canyon 1	ñar -66	154	fiar-/2	6.01			0
	Jun-72	320	nar-/5	2./3	6.26	32.12	46.0
Diabio Canyon 2	Vec-68	151	Jul-74	3.58	• • •		0
• • • •	Jun-72	282	fiar - 76	5.75	3.50	52.32	Y.9
Beaver Valley 2	Bec-71	296	flar - 78	6.25			ų ,
	Har-72	360	nar - 78	5.00	0.25	100.07	0
Bellefonte 1	Dec-70	NA	Jul -77	6.57	_	.	0
.	Dec-72	348	Sep-79	6.75	2,00	-8.3%	0
Bellefonte 2	Dec-70	NA	Apr-78	7.34	_ ···	_	0
	0ec-72	348	Jun-80	7.50	Z.00	-8.3%	0

TABLE 2.4: SCHEDULE SLIPPAGE IN UNITS PLANNED OR UNDER CONSTRUCTION BY DECEMBER, 1972

	.			Years			
	Date of	Est	isated	te	Years	Progress	χ.
Unit Name	Estigate	Cost	COD	COD	Elapsed	Ratio	Complete
Byron 1	Jun-71	400	Oct-78	7.34			0
	Sep-72	464	Hay-79	6.67	1.25	53.72	. 0
Byron 2	Jun-71	350	8ct-79	8.34			0
	Jun-72	422	Mar-80	7.75	1.00	58.5%	. 0
Fermi Z	Mar-69	221	Feb-74	4.93			0
	Dec-72	437	Aug-76	3.67	3.76	33.5%	28.5
LaSalle 2	Jun-70	300	Oct-76	6.34			0
	Sep-72	330	Sep-78	6.00	2.25	14.9%	0
McGuire 2	Sep-70	179	Nov-76	6.17			0
	Sep-71	220	Nar-77	5.50	1.00	67.1%	0
Nine Mile Point 2	Dec-71	370	Jul-78	6.59			0
	Sep-72	370	Nov-78	6.17	0.75	55.3%	0
Shearon Harris I	Jun-71	234	Har-77	5.75			0
	Dec-72	274	Nar - 78	5.25	1.50	33.5%	. 0
Shearon Harris 2	Jun-71	234	Jun-79	7.01			0
	Dec-72	274	Har -79	6.25	1.50	50.31	0
Shoreham	Har-67	105	Nay-73	6.17			0
	Jun-72	309	Hay-77	4.92	5.26	23.9%	1.5
Waterford 3	Sep-70	230	Jan-77	6.34			Û
	Sep-72	350	Jan-77	4.34	2.00	100.07	0.5
Watts Bar 1	Dec-70	NA	Aug-76	5.67			0
	Dec-72	324	Nay-77	4.42	2,00	62.7%	0
Watts Bar 2	Dec-70	ha	Hay-77	6.42			NA
	Dec-72	324	Feb-78	5.17	2.00	62.2%	
Zimmer 1	Dec-69	199	Jan-75	5.09			0
	Dec-72	311	Aug-77	4.67	3.00	14.0%	1

AVERAGES:		
Simple:	2.95	43.4%
Weighted by Years:		45.0%
NUMBER OF DATAPOINTS:	65	65

Notes: + Constructor=UE&C ## Architect/Engineer=UE&C

		Estimates			
Unit Name	Date of Estimate	Cost	COD		
Connecticut Yankee	1962	86	1967		
	1963		1967		
	1967	104	1967		
	Actual	104	Jan-68		
Millstone 1	Dec-65		Aug-69		
	Mar-67	81	Aug-69		
	Sep-67	84	Aug-69		
	Dec-68	7 0	Jan-70		
	Mar-69	90	Mar-70		
	Sep-69 ·	92	0ct-70		
	Jun-70	92	Nov-70		
	Sep-70	92	Dec-70		
	Dec-70	92	Feb-71		
	Actual	97	Mar-71		
Vermont Yankee	Sep-66	88	0ct-70		
	Sep-67	120	Jul-71		
	Mar-70	133	Jul-71		
	Feb-71		Oct-71		
	Jul -71	154	Mar-72		
	Dec-71		Sep-72		
	Actual	184	Nov-72		
Filgrim 1	Mar-64		0ct-71		
	Jul -45	70	Jul -71		
	Feb-67	105	Ju1-71		
	Jun-68	122	Sep-71		
	Jan-70	153	Sep-71		
	Jun-70		Dec-71		
	Mar-71		Nov-71		
	Mar-71		Apr-72		
	Sep-72		Nov-72		
	Actual	239	Dec-72		
Maine Yankee	Sep-67	100	May-72		
	Sep-68	131	May-72		
	Mar-70	181	May-72		
	Actual	219	Dec-72		

TABLE 2.5: COST AND SCHEDULE ESTIMATE HISTORIES of New England Nuclear Units to December, 1972

.

. ~

.

TABLE 3.1: COST AND SCHEDULE SLIPPAGE: Completed Plants, with COD up to 12/76

١

1

1.

	Act	uals					Est.	Nos	inal		
			C.P.	Date of	Esti	mated	Years	Cast	Муоріа	Duration	z
Unit Name	Cost	COD	i ssued	Estimate	Cost	COD	to COD	Ratio	Factor	Ratio	Ceap
Nine Mile Point 1	162	Dec-69	Apr-65	Sep-64	68	Jul - 68	3.83	2.39	1.255	1.37	0.0
Oyster Creek 1	90	Dec-69	Dec-64	Sep-65		Nov-67	2.17			1.96	18.0
Dresden 2 +	83	Ju1-70	Jan-66	Mar-66		Feb-69	2.92			1.48	6.0
Ginna	83	Jul -70	Apr-66	Mar-66		Jun-69	3.25			1.33	0.0
Point Beach 1	74	Dec-70	Jul-67	Sep-66		Apr-70	3.58			1.19	0.0
Millstone 1	97	Nar-71	Nay-66	Mar-67		Aug-69	2,42			1.65	21.7
Robinson 2	78	Mar-71	Apr-67	Jun-66		Hay-70	3.92			1.21	0.0
Monticello	105	Jun-71	Jun-67	Jun-66		Nay-70	3.92			1.28	0.0
Dresden 3	104	Nov-71	Oct-66	Mar-66		Feb-70	3.92			1.45	2.0
Palisades	147	Dec-71	Har-67	Mar-68	89	May-70	2.17	1.65	1.260	1.73	31.0
Point Beach 2	71	8ct-72	Jul -68	Har-67		Apr-71	4.08			1.37	0.0
Vermont Yankee	172	Nov-72	Dec-67	Sep-66	88	Oct-70	4.08	1.95	1.178	1.51	0.0
Maine Yankee	219	Dec-72	Oct-68	Sep-68	131	Hay-72	3.66	1.67	1.151	1.16	
Pilgris 1	231	Dec-72	Aug-68	Jun-68	122	Sep-71	3.25	1,89	1.216	1.39	
Surry 1	247	Dec-72	Jun-68	Dec-68	165	Mar-71	2.25	1.50	1.196	1.78	15.2
Turkey Point 3 [1]	109	Dec-72	Apr - 67	Sep-69	99	Jun-71	1.75	1.10	1.055	1.86	52.2
9uad Cities I €	100	Feb-73	Feb-67	Sep-67		Har -70	2.50			2.17	26.0
Quad Cities 2 #	100	Mar-73	Feb-67	Sep-67		Har-71	3.50			1.57	16.0
Surry 2	150	May-73	Jun-68	Dec-68	123	Nar-72	3.25	1.22	1.063	1.36	6.3
Oconee 1	156	Jul-73	Nov-67	Sep-67	93	May-71	3.66	1.68	1.152	1.59	1.0
Indian Point 2 ##	206	Aug-73	0ct-66	Jun-66		Jun-69	3.00			2.39	7.0
Fort Calhoun 1	174	Sep-73	Jun-68	Sep-68	92	May-71	2.66	1.89	1.271	1.88	17.0
Turkey Point 4 [1]	123	Sep-73	Apr-67	Sep-69	41	Jun-72	2.75	3.00	1.491	1.46	52.2
Prairie Isl 1	233	Dec-73	Jun-68	Dec-67	105	Nay-72	4.42	2.22	1,198	1.36	0.5
Zion 1	275	Dec-73	Dec-68	Har-69	205	Apr-72	3.09	1.35	1.101	1.54	12.0
Kewaunee	202	Jun-74	Aug-68	Mar-69	109	Jun-72	3,25	1.85	1.209	1.61	3.5
Cooper	246	Jul-74	Jun-68	Mar-68	127	Apr-72	4.08	1.94	1.176	1,55	0.9
Peach Bottom 2	522	Jul -74	Jan-68	Mar-68	163	Har-71	3.00	3.20	1, 474	2.11	4.4
Browns Ferry 1	256	Aug-74	May-67	Sep-67	124	Oct-70	3.08	2,06	1.264	2.24	8.0
Oconee 2	160	Sep-74	Nov-67	Dec-67	88	May-72	4.42	1.83	1.146	1.53	0.0
Three Mile I. 1 ±	398	Sep-74	Nay-68	Dec-68	150	Sep-71	2.75	2.65	1.426	2.09	9.0
Zion 2	290	Sep-74	Dec-68	Har-69	194	Hay-73	4.17	1.49	1.101	1.32	9.0
Arkansas l	233	Dec-74	Dec-68	Mar-69	128	Dec-72	3.75	1.69	1.150	1.53	1.0
Oconee 3	160	Dec-74	Nav-67	Dec-67	93	Jun-73	5.50	1.73	1.105	1.27	2.0
Peach Bottom 3	220	Dec-74	Jan-68	Har-68	145	Jan-73	4.84	1.52	1.090	1.40	1.6
Prairie Isl 2	172	Dec-74	Jun−68	Dec-67	80	Hay-74	6.41	2.15	1.127	1.09	0.5
Duane Arnold	202	Feb-75	Jun-70	Dec-70	148	Dec-73	3.00	1.36	1.109	1.39	10.0
Browns Ferry 2	256	Har -75	Nay-67	Har-67	117	Feb-70	2.92	2.18	1.306	2.74	3.0
Rancho Seco	344	Apr-75	8ct-68	Dec-67	134	Hay-73	5.42	2.56	1,190	1.35	0.0
Calvert Cliffs 1	429	May-75	Jul-69	Har-69	124	Jan-73	3.84	3.46	1.382	1.61	3.0
Fitzpatrick	419	Jul -75	Hay-70	Mar -68	224	May-73	5.17	1.87	1,129	1.42	1.0
Cook 1	538	Aug-75	Mar-69	Jun-69	235	Sep-72	3.25	2.29	1.290	1,90	1.0
Brunswick 2 ±±	382	Nav-75	Feb-70	Dec-70	195	Har-74	3.25	1.96	1.230	1.51	10.0
Hatch 1	390	Dec-75	Sep-69	Har-70	185	Jun-73	3.25	2.11	1.258	1.77	5.0
Millstone 2	418	Dec-75	Dec-70	Dec-70	239	Apr - 74	3.33	1.75	1.193	1.50	10.0
Trojan	452	Dec-75	Feb-71	Har-71	228	Sep-74	3.50	1.98	1.216	1.36	3.6
St. Lucie 1	470	Jun-76	Jul -70	Dec-70	200	Jun-74	3.50	2,35	1.277	1.57	9.0
Indian Point 3	570	Aug-76	Aug-69	Sep-69	156	Jul -72	2.83	3,65	1.580	2.46	NA
Basvar Valley 1	599	Sct-76	Jun-70	Sec-70	219	Jun-73	2.75	2.73	1,442	2.21	5.0

TABLE 3.1: COST AND SCHEDULE SLIPPAGE: Completed Plants, with COD up to 12/76

Actuals							Est.	Hoa	inal		
			С.Р.	Date of	Esti	ated	Years	Cast	Hyopia	Duration	z
Unit Name	Cost	COD	issued	Estimate	Cost	COD	to COD	Ratio	Factor	Ratio	Co≡p

AVERAGE (THROUGH 12/76):	2.05	1.228	1.624
NUMBER OF DATAPOINTS:	37	37	49

					Est.		Cost		
	С.Р.	Date of	Esti	aated	Years	Years	Growth P	rogress	ž.
Unit Neme	i ssued	Estimate	Cost	COD	to COD	Elapsed	Rate	Rate	Coep
Diablo Canvon I	Anr - 68	Der-48	154	Jan-73	4.09			~~~~	0
bidbib bunyon i	npi uo	Sec 33	530	Jun-77	0.75	7.76	17.32	43.12	98.5
-Arnune Ferry 3	Jul -68	Jun-49	149	Srt-77	1.33	,,,,			26.0
> 51 GMID 1 City 0		Jun-75	534	300-76	1.00	4 00	8.7%	5.5%	2010
Salam 1 F	Sen-49	Ber-47	157	Har-77	1.00 1.75	0100	w . / A	0104	0.0
907CB 7 -	och oo	Har-75	479	Gon-74	1 51	7 25	77 9 7	37 87	90.5
Salpa 7 #	Sen-68	Der-47	129	Nor-73	5 75	1.444	<i>LL: / 2</i>	07103	0.0
JALEM L 4	och po	Gen-74	101	Nov-79	4 44	6 76	22 22	9 77	49 1
Crystal River 3	Spn-19	Jun-49	149	Apr-77	2 97	01/0	******	017.4	7.6
or your niver o	och no	Jun-75	470	Gen-76	1,25	4.00	19.02	76.32	95.0
Conk 2	Har-49	Jun-49	235	Gen-77	3,25	0100		20104	1.0
OUCK L	1141 07	Ber-74	437	Jun-78	1.50	7.51	8.62	23.42	82.4
Colvert Cliffe 2	Jul -49	Nar-49	105	.lon-74	4,94		0101	201.14	7.0
	041 D)	Nec -75	251	Jan-77	1.09	6.76	13.82	55.52	92.1
Three Nile I, 7 +	Nov-49	Sen-70	785	Hay-74	3.66				NA
	1107 07	. Ann-74	437	Nav-78	1.75	5,92	14.62	32.41	81.0
Rruncwirk **	Feb-70	Der-70	194	Har-74	5.75	0172		02018	4.0
Di Glizaren 1	, 20 , 0	Dec -75	329	Nar -77	1.25	5.00	11.1%	80.0%	86.0
Semicyah 1	May-70	Jun-78	187	Anr-74	3.83	0100			5.0
ordaollan x	nay 70	Sen-76	475	Nav-78	1.66	6.26	16.12	34.7%	80.0
Senucyah 7	Hav-70	Sen-70	197	Der -74	4, 25	0120			NA
ordonin r	may iv	Jun-76	344	Jan-79	7.58	5.75	12.32	28.9%	NA
Dishlo Canvon 2	Der -70	Mar-71	185	Nav-75	4.17				0
		Jun-76	425	Jun-77	1.00	5.26	17.1%	60.3%	79
North Anna 1	Feb-71	Jun-71	308	Mar-74	2.75				29.0
		Nar -76	567	Apr-77	1.08	4.75	13.7%	35.0%	88.8
North Anna 2	Feb-71	Sep-71	191	Jun-75	3.75				7.8
		Dec-76	381	Aug-78	1.66	5.25	14.0%	39.6%	76.3
Farley 1	Feb-71	Sep-71	259	Apr-75	3.58				6.0
•		Jun-76	614	Jun-77	1.00	4.75	19.9%	54.3%	91.0
Davis-Besse 1	Mar-71	Sep-70	266	Dec-74	4.25				2.0
		Dec-75	533	Har-77	1.25	5.25	14.1%	57.1%	95.0
Farley 2	Aug-72	Mar-73	268	Apr-77	4.08				5,3
		Dec-76	572	Apr - 79	2.33	3.76	22.4%	46.7%	42.0
Fermi 2	Sep-72	Dec-72	439	Aug-76	3.67				28,5
		Jun-75	899	Sep-80	5.26	2.50	33.2%	-63.6%	45
liener 1	Oct-72	Dec-72.	311	Aug-77	4.67				1
		Sep-76	531	Jan-79	2.33	3.75	15.32	62.2%	58.1
Arkansas 2	Dec-72	Jun-73	275	0ct-76	3.33				13.6
		Dec-75	393	Har - 78	2.25	2.50	15.3%	43.5%	56.4
Hatch 2	Dec-72	Dec-72	330	Apr - 78	5.33				11.0
		Jun-76.	512	Apr -79	2.83	3.50	13.4%	71.4%	57.0
Midland 1	Dec-72	Jun-73	385	Mar-80	6.75				2
		Jun-76	700	Har-82	5.75	3.00	22.02	33.32	13
Nidland 2	Dec-72	Dec-72	383	Feb-80	7.17				2
		Jun-76	700	Mar-81	4.75	3.50	18.92	69.0%	16
Watts Bar 1	Jan-73	Jun-73	324	fiar -78	4.75				2
11_1.1 m m	7_ -	Sep-76	475	Jun-19	2.75	5.25	12.5%	61.32	31 51
Watts Bar 2	Jan-73	Jun-73	324	Bec-78	3.30				NH
Manuta d	F-1 77	5ep-/6	4/3	mar-80	3.50	5.25	12.34	01.04	11 1
fictuire l	reb-/3	5ep-/3	220	NCV-/6	3.1/	7 02	10 74	70 74	22.2
			- un			1 / 7	126 22	341.74	a. /

					Est.		Cost		
	С.Р.	Date of	Esti	eated	Years	Years	Growth P	rogress	Z
Unit Name	issued	Estimate	Cost	COD	to COD	Elapsed	Rate	Rate	Совр
McGuire 2	Feb-73	Sep-73	220	Sep-77	4.00	~			16.4
		Dec-76	384	Feb-80	3.17	3.25	18.7%	25.6%	55.6
Summer 1	Har-73	Jun-73	297	Jan-78	4.59				0.1
		Dec-76	635	Nav-80	3.41	3.50	24.2%	33.4%	42.5
WHP 2	Har-73	Sep-73	472	Sep-77	4.00				2
		0ec-76	901	Sep-80	3.75	3.25	22.02	7.7%	35.8
Forked River 1	Jn3-73	Har-75	694	Nav-82	7.17				0.5
for den harter a		Der-76	394	Nav-83	6.42	1.76	15.5%	43.17	0.5
lasalle l	Seo-73	Sep-73	430	Dec-78	5.25				0.0
		Dec-76	585	Sen-79	2.75	3.25	9.9%	76.9%	45.0
laSalle 7	Sen-73	Sec-74	343	Oct-79	5.08				3
	956 10	Der-74	400	Sen-80	3.75	2.25	7.1%	59.1%	37
San Bonfrp 2	Det-73	Har-74	655	Jun-79	5.25				0.0
		Jun-74	1210	Det-81	5.33	2.25	31.32	-3.6%	23.0
San Bonfre 3	Br+-73	Nar-74	655	Jun-80	6.25	~			0
		Ber-74	000 004	Jan-83	4.08	2.76	16.42	6.0%	20
Guennebanna 1	Nov-73	Sec 70	810	Nov-90	4.17	11/0			4.0
pasquenanna i	1404 70	Ber-74	1072	Nov-90	3.92	2.25	11.32	99.92	39.6
Sucouphanas 7	Nov-73	Nor-74	575	300-91	7 75	2120	11104		1
ousquenanna r	NO1 10	5en-74	704	Nov-97	5 47	2.51	8.5%	63.22	21.2
Railly Nuclear 1	Hav-7ā	Gen-74	A17	300-77	2 75		0104	00124	0.5
pollij Aucieal i	nay-14	Der-74	478	Nov-97	5,00	.7 75	20.07	-140.92	0.5
Requer Valley 2	H=1-74	Son-74	495	Jun-Ri	4 75	~ * * ~ ~ ~	LVIVA	110104	0.05
Deale: laytey t	nayin	Sep-75	972	N=v-97	5.47	2.00	16.02	54.32	0.5
linerick t	Jun-74	Con-71	1712	Anr-St	4 58	2.00	10104	01104	2
CIDCHICK I		3un-74	1212	00r-93	4 83	1 75	0.07	-14.37	78.5
liserick 7	3115-74	001 70 Der-78	570	3.1-97	7 59		0104	11104	2010
LIDE: JLA 1	ר ("נוטט	Jun-74	539	001 01 0nr-85	7.30 7.97	1 50	0.07	-83.32	15.3
Nine Hile Print 2	Jun-74	Nor-75	749	Brt-87	7 59	1100	VI V <i>A</i>	00104	1
HTHE HTTE I DTHF T	van 15	3110-74	793	0ct 01 0rt-97	4.34	1 25	4.72	100.02	1.4
North Apps 3	311}-7₫	Dor-74	432	Jun-80	5.50	1110	1.1.2		3.6
	944 / 1	Nar-76	653	Anr-At	5.09	1.25	39.22	33.3X	6.9
North Anna A	Jul -74	Sen-74	281	Dec-79	5,25		0/12/		1.7
		Har-76	423	Nov-81	5.67	1.50	31.42	-28.27	1.6
Hillstone 3	∆un=74	Har-75	793	Nov-79	4.47	1100			5.8
MITISCOME O	ang sa	Jun-76	998	Nav-82	5.97	1,25	20.12	-99.12	9.9
Grand Sulf 1	Gen-74	Sen-75	689	Sen-79	4,00				11
	och , ,	Sen-74	935	Jun-80	3.75	1.00	35.42	24.92	32.5
Grand Gulf 2	Sen-74	Sen-75	699	Sen-83	8.00				1.5
	och vi	5ep-74	775	Sen-93	7.00	1.00	10.82	99.72	6.5
Hone Creek 1	Nov-74	Nar-75	1972	Dec-82	7.75		10704		0
Hope Dieen I		Sen-74	2580	Nav-84	7.67	1.51	19.57	5.5%	2
Waterford 3	Nov-74	Der-74	710	Jun-80	5.50				1
		Sen-76	815	Apr-81	4.58	1.75	8.27	52.52	15
Rellefonte 1	{)pr -7₫	Nar-75	487	Jun-80	5,24				3
Derteronte 3		Sen-74	587	Jun-80	3.75	1.51	13.92	100.02	24
Bellefonte 7	Der-74	Mar-75	487	Har-81	6.01				0
	//	Sen-74	587	Nar-81	3.75	1.51	13.92	149.62	•
Comanche Peak 1	Dec-74	Nar-74	355	Jan-80	5,84				0
		Dec-76	690	Jan-80	3.08	2.76	27.31	100.02	40
Comanche Peak 2	Dec-74	Har-74	355	Jan-82	7.84				0
		Dec-76	690	Jan-82	5.09	2.76	27.3%	100.0%	17

					Est.		Cost		
	С.Р.	Date of	Esti	mated	Years	Years	Growth	Progress	z
Unit Name	issued	Estimate	Cost	COD	to COD	Elapsed	Rate	Rate	Comp
Surry 3	Dec-74	Nar-75	728	May-83	8.17				0
		Jun-76	1074	Apr -85	9.84	1.25	36.3%	-132.8%	0
Surry 4	Dec-74	Mar-75	506	Hay-84	9.18				0
		Jun-76	765	Apr -87	10.84	1.25	39.01	-132.5%	0
Catawba 2	Aug-75	Dec-74	542	Jan-82	7.09				0
		Dec-76	542	Jun-83	6.50	2.00	0.0%	29.4%	9.5
HNP 1 ##	Dec-75	Jun-76	1147	Mar-81	4.75				1.2
		Dec-76	1057	Sep-81	4.75	0.50	-15.0%	0.02	1.8
Braidwood 1	Dec-75	Nar-76	716	Oct-81	5.59				1
		Sep-76	718	Oct-81	5.08	0.50	0.6%	100.0%	6
Braidwood 2	Dec-75	Har-76	485	0ct-82	6.57				1
		Sep-76	486	Oct-82	6.08	0.50	0.4%	100.02	Ą
Byron i	Dec-75	Nar-76	663	0ct-80	4.59				6
		Dec-76	664	Nar-81	4.25	0.75	0.2%	45.12	14
Byron 2	Dec-75	Mar-76	487	Oct-82	6.59		•		6
		Sep-76	489	Oct-82	6.08	0.50	0.8%	100.0%	9
		FA.							
	AVEKAG	£5;					15 74	77 / 9	
	518p1	8 1				3.15	13./4	33.84	
	¥eigh	teo by yea	r 5			-	16.47	30.32	

Weighted	by years	-	16.4%	34
NUMBER OF	DATAPOINTS:	60	60	

50

+Constructor=UE&C **Architect/Engineer=UE&C TABLE 3.3: UNITS WITH CONSTRUCTION PERMIT OR LIMITED WORK AUTHORIZATION IN DECEMBER, 1976 (PERCENT COMPLETE <= 10%).

Unit Name	cp/lwa	issue date	% complete at 12/76	Estimated COD
Forked River 1	cn:	.Tul-73	0.08	Mav-82
Vogtle 1	cp:	Jun-74	0.0%	Apr-83
Voctle 2	cp:	Jun-74	0.0%	Apr-84 ++
Surry 4	cp:	Dec-74	0.0%	Apr $-87 + +$
Surry 3	: 90	Dec-74	0.08	Apr-86
Perrv 1	lwa:	Oct-75	0.0%	Jun-81
Perry 2	lwa:	Oct-75	0.0%	Jun-83 ++
Clinton 2	: dD	Feb-76	0.08	Jun-83 ++
Palo Verde 3	cp:	Mav-76	0.0%	Mav-86 ++
Bailly 1	cp:	Mav-74	0.5%	Oct-82
WPPSS ⁴	lwa:	Aug-75	0.5%	Mar-83 ++
South Texas 2	cp:	Dec-75	0.5%	Mar-82 ++
Callaway 2	cp:	Apr-76	0.5%	Apr-81 ++
Beaver Valley 2	cp:	May-74	1.0%	May-82 ++
Hope Creek l	cp:	Nov-74	. 1.0%	May-84
Hope Creek 2	cp:	Nov-74	1.0%	May-86 ++
Palo Verde 2	cp:	May-76	1.0%	May-84 ++
River Bend l	lwa:	Sep-75	1.5%	Oct-81
River Bend 2	lwa:	Sep-75	1.5%	Oct-83 ++
WPPSS 1	cp:	Dec-75	1.5%	Sep-81
North Anna 4	cp:	Jul-74	2.0%	Nov-81 ++
Grand Gulf 2	cp:	Sep-74	2.0%	Jan-85 ++
Callaway l	cp:	Apr-76	2.0%	Oct-81
Comanche Peak 2	cp:	Dec-74	2.5%	Jan-82 ++
South Texas 1	cp:	Dec-75	2.5%	Oct-80
Nine Mile Point 2	cp:	Jun-74	4.0%	Oct-82
North Anna 3	cp:	Ju1-74	4.0%	Apr-81
Catawba 1	cp:	Aug-75	5.0%	Jan-81
Catawba 2	cb:	Aug-75	5.0%	Jan-83 ++
Palo Verde 1	cp:	May-76	5.0%	May-82
Braidwood L	cp:	Dec-75	7.0%	Oct-79
Braidwood 2	cp:	Dec-75	7.0%	Oct-80 ++
Clinton 1	cp:	Feb-76	8.0%	Jun-80
AVERAGES				
All Units		Mav-75	2.0%	Nov-82
Second Units		Jun-75	1.4%	Aug-83
	-	1077		

Source: Muclear News, February 1977 Notes: ++ = Second Units, other than Seabrook 2

TABLE 3.4: MILLSTONE 2 COST ESTIMATE HISTORY

		Est	imates
Unit Name	Date of Estimate	Cost	COD
annin eenna peerd pana baak ainin, aaga panya kaling			
Millstone 2	Dec-67	150	Apr-74
	Mar-68	146	Apr-74
	Dec-68	179	Apr-74
	Dec-69	183	Apr-74
	Dec-70	239	Apr-74
	Sep-71	252	Apr-74
	Sep-72	282	Apr-74
	Mar-73	341	Dec-74
	Dec-73	380	May-75
	Sep-74	399	Aug-75
	Jun-75	399	Oct-75
	Sep-75	416	Nov-75
	Dec-75	416	Dec-75
	Actual	426	Dec-75

TABLE 4.1: COST AND SCHEDULE SLIPPAGE: Completed Plants, with COD in 1977 and 1978

	Actu	als	С.Р.	Date of	Esti	sated	Est.	Xo:	inal	Duration	z
Unit Name	Cost	COD	issued	Estimate	Cost	COD	Years	Cost	Myopia	Ratio	Совр
							-to COD	Ratio	Factor	-	
Browns Ferry 3	301	Mar -77	Jul -68	Jun-69	149	8ct-72	3.34	2.02	1.234	2.32	26.0
Brunswick I #	318	Mar-77	Feb-70	Dec-70	194	Mar-76	5.25	1.64	1.099	1.19	4.0
Crystal River 3	366	Mar-77	Sep-68	Jun-69	148	Apr-72	2.83	2.47	1.376	2.73	2.0
Calvert Cliffs 2	335	Apr-77	Jul-69	Mar-69	105	Jan-74	4.84	3.19	1.271	1.67	2.0
Salem 1 🗧	850	Jun-77	Sep-68	Dec-67	152	Har-72	4.25	5.59	1.500	2.24	0.0
Davis-Besse 1	588	Nov-77	Har-71	Sep-70	266	Dec-74	4.25	2.21	1.205	1.69	2.0
Farley 1	727	Dec-77	Feb-71	Sep-71	259	Apr-75	3.58	2.81	1.334	1.75	6.0
North Anna 1	782	Jun-78	Feb-71	Jun-71	308	Har-74	2.75	2.54	1.403	2,55	29.0
Cook 2	444	Jul -78	Har-69	Jun-69	235	Sep-72	3.25	1.89	1,216	2.79	1.0
Three Mile I. 2 ±	715	Dec-78	Nov-69	Sep-70	285	May-74	3.66	2.51	1.286	2.24	NA
AVERAGE (1969 - 1978)								2.19	1.242	1.707	
NUMBER OF DATAPOINTS:								47	47	59	
AVERAGE (1977 and 197)	3)							2.69	1.293	2.117	
NUMBER OF DATAPOINTS:								10	10	10	

Constructor=UE&C

£....

-

í

٠ł

					Est.		Cost		
	C.P.	Date of	Esti	sated	Years	Years	Growth P	ragress	X
Unit Name	issued	Estimate	Cost	COD	to COD	Elapsed	Rate	Rate	Совр
Diablo Canyon I	Apr -68	Sep-76	530	Jun-//	0.75				Y8.0
. . . .		Jun-78	672	Jun-79	1.00	1./5	14.5%	-14.4%	99.2
Sales 2 ₹	Sep-68	Sep-74	496	May-79	4.66			00 AV	48.1
		flar -78	619	May-79	1.17	3.50	6.51	99.92	90.6
Seguoyah I	May-70	Sep-76	475	Hay-/8	1.66	B 46		55 48	80.0
		Sep-78	632	Uct-/4	1.08	2.00	13.4%	24.07	92.0
Sequoyah 2	May-70	ປີນກ-76	364	Jan-/9	2.58				NA 70 A
		Sep-/8	632	168-80	1.73	2.25	27.8%	31.14	78.0
Diablo Canyon 2	9ec-/0	งนก-/6	425	JUN-//	1.00		10 TN	50 AN	17
		9ec-/8	548	Jun-80	1.30	2.50	10.7%	-20.0%	70.7
North Anna 2	Feb-/1	Vec-/6	381	Aug-/8	1.66			57 1 8	/6.3
		nar-/8	467	Mar-19	1.00	1.23	11.14	33.4%	70.4
Farley 2	Aug-/2	Dec-/6	5/2	Apr-19	2,33	. 75	7	10 74	42.0
		Sep-/8	632	Apr-80	1.38	1.73	1.84	92.72	12.9
teral 2	Sep-72	Jun-/5	844	Sep-80	3.28			05 0¥	
-		Nar -77	882	Dec-80	j./6	1./5	-1.17	85.8%	50 (
Ziemer 1	0ct-72	Sep-76	531	Jan-/4	2.33			77 08	38.1
		fiar-/8	664	Jan-80	1.84	1.30	15,14	33.ZA	81.5
Watts Bar 1	Jan-73	Sep-76	4/5	Jun-/9	2.75	0.05	15 78	PE 48	31
		Dec-78	617	Jun-80	1.50	2.23	12.32	33.4%	87
Watts Bar 2	Jan-/j	Sep-76	4/3	fiar-80	3.30	0.05	10 78		
		9ec-/8	61/ 754	nar-81	2.23	2,23	12.34	33.3%	55 71 1
MCGUITE 1	Feb-/j	Dec-/6	184 540	F88-14	2.17	n AA	10 / 9	EA 44	81.Z
	C. 1. 77	Dec-/8	549	F60-80	1.17	2.00	17.54	30.07	75.0
AcGuire Z	Feb-/S	Dec-/6	384 540	Feb-80	3.17	1 75	77 09	17 14	33.0 Fi
D	N 77	nar-/8 D 7/	347	N87-81	3.00	1,23	33,24	13.44	נט איז ב
SUBBER 1	nar-13	VEC-/8	803 / 75	nay-60	3.41	+ 75	7 /4	11 54	41.3
1319176 C	N 77	38p~/8	6/3 001	Dec-80	2.23	1.73	3.04	00.1%	//.V 75.0
WIRP 2	nar-/s	9ec~/6	701	389-80 C 00	ل/،د ۲۰ ۲۸	1 75	0.04	100 74	10.0 LA 7
Factor Biner 1	1	nar-70	1001	320-0V	2,30 6 89	1.13	0.04	100.3%	00.7
FOFRED AIVER I	301-73	9ec~/d	074 1150	127-0J	0.42 5 00	2 00	17 44	70 77	0.J A t
1	C=== 77	98C-70 Dee.76	1130	Dec-do Con-70	3.00	2.00	10.74	IVel k	AE 0
	peh-12	986-78 Con_77	383 175	320-77 Con_70	2.13	0.75	21 07	00 0Y	55 A
1-0-11- 7	Con-73	32µ-77 Nor-74	673 800	Con-DO	7.75	V./4	21204		33.0
	peb-10	Dec-70 Dec-79	590	Sep-90	175	2.00	20 AY	100.07	50
Con Boniro 7	Oct-73	June 74	1210	0-+-01	5.73	23.04	24118	100109	27.0
	ULL /J	Jun-77	1720	Srt-St	4 77	1 00	0 17	00 07	AA 0
Can Booleo 3	8-1-73	Ber-76	1010	Jan-87	4.00	1100) e 2 in	37174	20
Jen unurie J	021-75	Jun-77	1090	Jan-27	5.50	0.50	17 49	100 37	70
Curnuchanna i	Nov-77	Ber-74	1032	Nov-90	3.35	0.00	11.08	700108	39.4
JUSYUENAMIA I	107 75	Sep-79	12031	Feb-Si	7 47	1 75	13 97	95.57	76.1
Surguptons 7	Nov-73	Con-74	704	100 01 May-97	5.47	7612	20207	40100	71 7
onedaengung T	NUY-73	Gan-70	700	Hay-DI Nov-97	3.07	2 00	5 47	100 07	51 7
Desuge Uniter 2	Nau-78	Son-74	ימן מיים	Hav-07	5.41	T.44	4.5%	100104	51.J
neater Antiel T	ndy∹/¶	JEP-/0 Gan-70	744 1415	Hay OL	5.67	2 00	77 07	-0 17	74
Dailly Nuclear 1	Nau-78	Jep-10 Nor-71	171 171	Nov-07	5,07	2.00	a ve i k		0.5
DDITIA HARTER I	11 47 -/ 4	Nec-70	950	Nor-94	6.03	7.00	12.37	-4.72	0.5
limprirk 1	Jun-74	Jun-74	1717	Anr-AT	4.9T	11 V V	1.0.0	13 24	28.4
	VUII 1-1	Jun-77	1635	Apr -93	5,83	1.00	34.97	100.02	32
limprirk 7	Jun-74	311n-74	539	Apr-95	8,83		w 1 # 7 19		15.3
LING ICK Á	MA11 / 1	Jun-77	949	Apr -85	7.83	1.00	76.12	100.07	22

· • · · .

Ę.

 $\mathcal{F}_{\mathbb{P}^{2}}$

					Est.		Cost		
	С.Р.	Date of	Est	issted	Years	Years	Growth	Progress	ž
Unit Name	issued	Estimate	Cost	CDD	to COD	Elapsed	Rate	Rate	Co∎p
vogtle i	Jun-/4	Jun-74	629	Apr-80	5.83				0
W11- D	1	3ep-/8	1586	NOV-84	5.1/	4.23	24.37	-8.07	3
YBGTIE Z	Jun-/4	JUD~/4	334	Apr-81	6.85	1 50	24 8		0
	Term 7.8	Vec-/8	1297	NOV-8/	8.92	4.50	21.82	-46.32	<u>ن</u>
Rine file foint 2	JUN-/4	JUN-/8	193	UCT-82	6.j4 5.54	D F0	17 14	10.04	1.4
North April 7	7	1960-19 No. 71	1434	UCT-84	3.84	2.50	43.4%	19.94	24.1
MORIN HANB J	321-/4	nar-75 Ma-70	650	HPF-81	3.09	5 44		95 14	8.9
North Ares A	1 74	ner-/8	1012	8C1-83	3.37	2.00	24.34	-23.14	
	081-/4	nar-70 M 70	110	NOV-01	3.8/	5 66	01 AV	11 DY	1.3
Willetonn 3	Aun	705-74	000	320-04 May-02	5.31	2.00	29.76	-41.84	3./ n.n
nilisione o	អបច្- / ។	3011-70 Con-70	170	Hay-04	3.11 7 17	י הב	75 (4	.77 74	7+7
Grand Gulf 1	Con-74	220-70 Con-76	1700	105-20	/.0/ 7 75	2.23	11.14	-11.5	24.J 37 E
	oep-14	Bor-77	100	0011-00 Apr-01	0./J 7 77	1 75	20 07	77 17	32.3 57.0
Grand Gulf 2	Son-74	Gen-71	11/7	Con-07	7 00	န်းနည်းသိ	10.04		۲.12 ۲.5
orano ourr L	רו קשנ	Der-77))J 054	Jan-94	1.00	1 75	10 17	73 89	0.J 7 1
Hone Freek 1	Nov-74	Sen-74	7590	Hou-RA	7 47	لاكوية	10.14	14174	2.7 7
Hope of LEA 1	ND7 77	Jun-78	2000	Nav-RA	5 07	1 75	۶ TY	100 17	25
Waterford 3	Nnv-74	Sen-74	815	0nr-91	4.59	11/0	0.78	700114	15
HELLING V	101)1	Sep , 0 Sen-79	1110	Rrt-Rt	7,00	2 00	16 77	74.97	78 8
Rellefante I	Der-74	Sen-74	587	Jun-90	3.75	2.00	A 66 8 7 78	1.10.10	74
	222 / 1	Sen-78	797	Sen-81	3.00	7.00	16.72	37.42	50 50
Bellefonte 2	Dec-74	Sep-76	587	Nar-81	3.75	2100	10124	01114	
		Sep-78	792	Jun-82	3.75	2.00	16.22	0.02	42
Comanche Peak 1	0ec-74	Dec-76	670	Jan-80	3.08				40
		Jun-77	850	Jan-91	3.59	0.50	51.9%	-101.17	39
Comanche Peak 2	Dec-74	Dec-76	690	Jan-82	5.09				17
		Jun-77	850	Jan-83	5.59	0.50	51.9%	-100.5%	9.67
Cata⊭ba 1	Aug-75	Dec-74	542	Jan-81	6.09				0.7
		Mar-78	673	Jul -81	3.34	3.25	6.9%	84.7%	28
Catamba 2	Aug-75	Dec-76	542	Jun-83	5.50				9.5
		Har -78	673	Jan-83	4.84	1.25	17.02	133.2%	22
料約6 7	Dec-75	Dec-76	1057	Sep-81	4.75				1.8
		Nar-78	1164	Dec~82	4.75	1.25	8.0%	0.0%	9.3
Braidwood I	Dec-75	Sep-76	718	Oct-81	5.08				6
.		Dec-79	902	Oct-81	2.84	2.25	10.7%	100.0%	45
graidwood 2	Dec-75	Sep-76	486	8ct-82	6.08				4
		Dec-78	601	Oct-82	3.84	2.25	9.9%	100.0%	36
Byron 1	Dec-75	9ec-/6	664	flar-81	4.25			~	14
Duran D	D. 75	Dec-/8	784	Sep-81	2.75	2.00	21.71	/4.8%	52
byron 2	nec-12	389-78 D 70	487	UCT-82	0.08	0.05		100 00	40
Clinton 1	E-2.71	Dec-78 Cen-74	014	UCI-82	3,84	2.23	33.42	100.0%	무소
CINCUN 1	res-/6	388-78 8-+ 70	823	JUB-01	4.73	0.05	00 7¥	77 7*	3 7/
Clipton 7	Erk_7L	Det-10 Con-74	1277	Vec-02	4.00	L.L.d	22.34	<i>يلا ول</i> ل	30 A
DINCUN Z	reg-10	3ep-/0 Bec-77	977 1050	1un-00	10 51	1 75	70 84		0 A
Callaway t	Apr-74	Der-74	1099	Jun-97	5 50	ة و ير ما	JT#44	-220.4%	v 77
	טי וקוו	0ec ;0	1000	0ct-87	4.83	1_00	7 17	44 TY	11 2
Callaway 2	Apr-76	Dec-76	1297	Apr -87	10.33	1100	V 818	4017A	0.4
		Sep-78	1306	Apr-87	8.58	1.75	0.42	100.07	0.4
Palo Verde 1	Hav-76	Dec-75	975	Nav-82	6.42		¥ 8 1 4		0
	•	Sep-78	760	May-82	3.67	2.75	-8.7%	99.97	28.5
		-							

ŝ

r ~ : { _

1

Ϋ́.

					Est.		Cast		
	C.P.	Date of	Esti	nated	Years	Years	Growth F	rogress	7.
Unit Name	issued	Estimate	Cost	000	to COD	El apsed	Rate	Rate	Coap
Palo Verde 2	May-76	Dec-75	845	Nay-84	8,42				0
		Sep-78	578	May-84	5.67	2,75	-11.8%	99.92	7.8
Palo Verde 3	Hay-76	Mar-76	950	Jun-86	9.50				0
	·	Sep-78	702	Jun-86	7.75	2.50	-11.4%	69.9%	0.5
Seabrook 1 ± ±±	Jul -78	Dec-76	684	Nov-81	4.92				1
		Jun-78	1340	Dec-82	4.50	1.50	56.6%	27.8%	13
Seabrook 2 # ##	Jul-76	Dec-76	684	Nov-83	6.92				1
		Mar-78	980	Dec-84	6.76	1.25	33.4%	13.0%	2
River Bend 1	Nar-77	Dec-77	1172	Sep-83	5.75				5
		Jun-78	1172	Sep-84	6.26	0.50	0.0%	-101.17	5
St. Lucie 2	May-77	Jun-77	850	May-83	5.91				1
	·	Dec-78	919	May-83	4.41	1.50	5.3%	99.9%	16.8
Hartsville A-1	May-77	Jun-77	602	Jun-83	6.00				3
	·	Sep-78	853	Jun-83	4.75	1.25	32.12	100.0%	13
Hartsville A-2	Hay-77	Jun-77	602	Jun-84	7.01		•		1
	•	Sep-78	853	Jun-84	5.75	1.25	32.1%	100.0%	
Hartsville 8-1	May-77	Jun-77	502	Dec-83	6.50				NA
	·	Sep-77	854	Dec-83	6.25	0.25	300.2%	100.0%	
Hartsville B-2	May-77	Jun-77	602	Dec-84	7.51				NA
	·	Sep-77	854	Dec-84	7.25	0.25	300.2%	100.07	
Perry 1	May-77	Sep-77	988	Dec-81	4.25				13.3
		Dec-78	1159	Nay-83	4.42	1.25	13.6%	-13.2%	33.2
Perry 2	Nay-77	Sep-77	1123	Jun-83	5.75				6.3
		Sep-78	1318	Nay-85	6.67	1.00	17.4%	-91.8%	20.2
St. Lucie 2	May-77	Jun-77	850	May-83	5.92				1
		Dec-78	919	Nay-83	4.42	1.50	5.3%	100.0%	16.8
Cherokee 1	Dec-77	Dec-77	336	Jan-85	7.09				1
		Mar -78	392	Jan-85	6.84	0.25	87.6%	100.0%	1
Cherokee 2	Dec-77	Dec-77	336	Jan-87	9.09				1
		Mar-78	392	Jan-87	8.84	0.25	87.6%	100.0%	2
Cherokee 3	Dec-77	Har - 77	336	Jan-89	11.85				0.5
		Har - 78	392	Jan-89	10.85	1.00	16.8%	100.0%	1
Shorehas	Jan-78	Sep-78	1293	Sep-80	2.00				75
		Dec-78	1337	Dec-80	2.00	0.25	14.4%	0.0%	78
WHP 4	Feb-78	Her -78	1610	Jun-84	6.26				3.2
		Sep-78	1982	Jun-85	6.75	0.50	51.0%	-98.4%	7.6
AVERAGES									
Simple;						1.66	28.6%	42.2%	
Weighted by years	5:		7				17.9%	41.4%	
NUMBER OF DATAPOIN	ITS:					70	70	70	

+ Constructor=UE&C

Architect/Engineer=UE&C

TABLE 4.3: UNITS WITH CONSTRUCTION PERMIT OR LIMITED WORK AUTHORIZATION IN DECEMBER, 1978 (PERCENT COMPLETE <= 10%).

.

Unit Name	cp/lwa	issue date	% complete at 12/76	Estimated COD
Seabrook 2	cp:	Jul-76	2.0%	Dec-84
Davis-Besse 2	lwa:	Dec-75	0.0%	Jun-88
Davis-Besse J	lwa:	Dec-75	0.0%	Jun-90 ++
Clinton 2	cp:	Feb-76	0.0%	Jun-88 ++
Tyrone 1	co:	Dec-77	0.0%	Jun-86
Black Fox 1	lwa:	Jul-78	0.0%	Apr-84
Black Fox 2	lwa:	Jul-78	0.0%	Apr-86 ++
Jamesport 1	CD:	Jan-79	0.0%	Jun-88
Jamesoort 2	CD:	Jan-79	0.0%	Jun-90 ++
WPPSS 5	 	Mav-78	0.3%	Jul-85 ++
Callaway 2	CB:	Apr-76	0.5%	Apr-87 ++
Palo Verde 3	 :	Mav-76	0.5%	May-86
Shearon Harris 2	 CD:	Jan-78	0.5%	Mar-86 ++
Shearon Harris 3	 CO:	Jan-78	0.5%	Mar-90
Phipps Bend 2	cp:	Jan-78	0.5%	Aug-85 ++
Shearon Harris 4	 CD:	Jan-78	0.5%	Mar-88
Bailly 1	 CB:	Mav-74	1.0%	Jun-84
Yellow Creek 2	co:	Nov-78	1.0%	Mav-86 ++
Forked River 1	co:	Jul -73	2.0%	Dec-83
Phipps Bend 1	ср <u>"</u>	Jan-78	3.0%	Aug-84
WPPSS 3	 CD:	Apr-78	3.0%	Jan-84
Yellow Creek 1	CD:	Nov-78	3.0%	Mav-85
North Anna 4	co:	Jul-74	3.7%	Mav-84 ++
Cherokee 1	co:	Dec-77	4.0%	Jan-85
Cherokee 2	ср:	Dec-77	4.0%	Jan-87 ++
Cherokee 3	co:	Dec-77	4.0%	Jan-87
Marble Hill 2	CD:	Apr-78	4.0%	Jun-84 ++
Vogtle 2	co:	Jun-74	5.0%	Nov-87 ++
River Bend 1	cp:	Sep-75 .	5.0%	Oct-84
River Bend 2	CD:	Sep-75	5.0%	indef.
Hartsville A-2	cp:	May-77	6.0%	Jun-84 ++
Hartsville B-2	cp:	May-77	5.0%	Dec-84 ++
North Anna 3	cp:	Jul -74	7.0%	Apr-83
Grand Gulf 2	cp:	Sep-74	7.0%	Jan-84 ++
WPPSS 4	cp:	Feb-78	8.0%	Mar-83 ++
South Texas 2	cp:	Dec-75	9.0%	Apr-83 ++
Hope Creek 2	cp:	Jun-74	10.0%	Sep-86 ++
Vogtle 1	cp:	Jun-74	10.0%	Nov-84
Hope Creek 1	cp:	Nov-74	10.0%	Sep-84
Seabrook 1	cp:	Jul -76	10.0%	Dec-82
Shearon Harris 1	cp:	Jan-78	10.0%	Mar-84
AVERAGES				
All Units		Nov-76	3.4%	Dec-85
Second Units		Dec-76	3.4%	Feb-86

Source: Nuclear News, February 1979 Notes: ++ = Second Units, other than Seabrook 2 TABLE 5.1: COST AND SHEDULE SLIPPAGE, Completed Plants, with COD in 1979 and first half of 1980

í,

с - Г Ц -Ц -

Ű

	Actu	als	С.Р.	Date of	Esti	nated	€st.	Nos	inal	Duration	Z
Unit Name	Cost	COD	issued	Estimate	Cost	COD	Years to COD	Cost Ratio	Myopia Factor	Ratio -	Comp
Hatch 2 Arkansas 2	509 640	Sep-79 Mar-80	Dec-72 Dec-72	Dec-72 Jun-73	330 275	Ap r -79 Oct-76	5.33 3.33	1.54	1.085	1.27 2.02	11.0 13.6
AVERAGE (1969 - 6/19 NUMBER OF DATAPOINTS	80) ;							2.18 49	1.24 49	1.71 61	
AVERAGE (1979 - 6/19 NUMBER OF DATAPOINTS	80) :							1.93 2	1.19	1.64 2	

					Est.		Cost		
	C.P.	Date of	Est	imated	Years	Years	Growth	Prooress	ž
Unit Name	issued	Estimate	Cost	CDD	to CDD	Elapsed	Rate	Rate	Comp
				~=~~~					
Diablo Canyon I	Apr -68	Jun-78	672	Jun-79	1.00				99.2
	•	Nar-80	880	Jun-81	1.25	1.75	16.7%	-14.4%	99.2
Sequoyah 1	Hay-70	Sep-78	632	Oct-79	1.08				92.0
• •	,	Jun-79	632	Jun-80	1.00	0.75	0.0%	10.6%	98.0
Sequoyah 2	Mav-70	Sep-78	632	Jun-80	1.75				78.0
		Sep-79	442	Jun-81	1.75	1.00	-30.12	0.07	84.0
Diablo Canvon 2	Dec-70	Dec-78	548	Jun-80	1.50				76.7
7		Dec-79	721	Jun-81	1.50	1.00	31.67	0.0%	97.9
Farley 2	Aua-72	Sep-78	652	Apr - 80	1.58		••••		77.4
		Sen-79	484	Sen-80	1.00	1.00	4.9%	58.07	83.7
Fermi 7	Sen-77	Jun-75	200	Sen-An	5 74	****	1.1.7	00104	∆5.
	ach it	Jun-80	1283	Har-92	1 75	5 01	7 47	70 17	79 A
7iaapr 1	8c+-77	Nar-79	664	Jan-90	1 94	01.01	1414	1.1.8.4.18	gt 3
		Jun-90	1027	Δnr-87	1 93	2 25	21 77	0.27	01.5 Q7 g
Hatte Rap 1	Jan-73	Ber-79	617	Jun-90	1.03	د د د د	-	VILA	,3.0 07
		Jun-90	726	Hav-87	1 92	1 50	10 97	-77 67	97
Hatte Ror 7	Jan-73	0un 30 Der-79	417	Har-RI	2 25	1:00	10:0%	11,00%	L0 L0
Hatty bui 1		Jun-90	726	Cob_97	7 47	1 50	10 97	-78 17	75
Brewirn 2	Feb-73	Nar-79	510	Nor-91	7 00	1.00	10.04	10.14	51
	150 10	Jun-90	275	Spp_97	2.00	2 25	1. 77	77 79	21 50
Suppor 1	Xar-73	Gan-79	475	Dep 01	2.23	2.23	0.74	JJ2 J#	77 0
VUMLI 1	1101 70	Har-RA	977	Jun-St	1 75	1 50	14 57	66 74	94.9
48P 7	#ar −73	Har-79	1001	Con-RA	2 50	1.00	17.Jk	00.7%	10.5
····· L	1101 70	Jun-90	7707	Jan-93	7.50	7 75	17 77	-7 79	00.1
lacalla t	Sen-77	Gen-77	1371	Con-70	2.30	2.23	7/+14	3.1%	55 0
	aeh-12	3ep-77	973	3ep-77	1 40	2 75	10 77	76 74	00 A
laSalla 2	Con_77		11V7 500	001-01 Son-00	1,00	1.13	17+16	30.3%	70.V ED
	aep-75	021-70 Jun-00	עםע גמל	389-80	2.00	: 50	00 19	17 AV	37 חר
San Annéro 7	8-+-77	3un-77	130	VUII-01 0-+_01	2.00	1.30	22.94	-10.44	13
	011-13		1020	OLC-01	4.33	0 7E	17 54	07 04	44.V DL A
San Annien 3	0-+-73	1un-77	1024	107	1,/J E ED	2.73	12.34	73.74	00.V
	066-70	Max_00	1000	van−03 1en-07	3.JC 2.07	7 7E	3 44	100.09	3V 70
Succushases 1	Nev., 77		1210	0411-03 F-1 01	2.00	2./3	4.44	100.04	40
ousquentinita I	MUY-7J	0ep=70	1273	1 07	1.92 D 73	1 00	54 74	D EV	/5.1
Curnuchanas 7	Hav-77	Sep-17 Con.78	1007	338-02 N 02	2.34	1.00	29.3%	8.3%	70.0
onednengning T	MU4-17	324-10	107	037-92 Aug 02	3.5/	1 75	(0.0%	05 7¥	31./
Postor Usting 7	¥78	Con-70	IVGL	Huy-oz	2.17	1./3	17.74	03.7%	23
beaver valley 1	nay-r4	389-70 Dec-70	1713	nay-04 N D/	3.87	1 75	77 54	10 14	28 75 0
Pailly Nuclear 1	¥78	080-77 Dec-70	LULH DEA	nay-oo	8:74 / A1	1.23	33.24	-60.1%	33.2
pairiy auciest i	ព៨ម៉្ា/។	086-78 Car .70	430	Vec-04	0.VI 7 75	A 75	11 AV	070 08	V.3 A E
limmick t	Jun74	324-17 Iun-77	1100	0011-07 Ann -97	1.13 E 07	0./3	41.04	~232.04	V.3 70
LINEFICK I	0411-14	3411-77 70-70	1000	Npr - 03	3.83 7 87	7 44	1 04	100 08	32
lignminh 9	7	1077	1073	Apr-do	3.83	2.00	1.84	100.04	32
	44(1-74	3011-77 Jun -70	747 000	HUF-0J	1.03	n 00	• • •	100.04	22 75
Unntin t	7	D== .77	797	N= 03	3.93 1 07	2.00	-1.14	100.04	ა კ
indrie i	vuii-14	345-7/	1337 1786	RUY*09	0.72 1.00	7 FA	5 74	00 04	5 10
Vootlo 7	Jun-74	001-00 0pr-70	1/40	пау-83 Ион-07	4.12 a an	2.30	3.44	dv. V4	10
nugite t	vui:-/4	086-18 1000	127/ 000	NOV-87	8.72	1 50	_17 JW	00 N¥	د
Ninn With Datas .	1 71	JUN-80 No70	788	107-01	1.71 E D.4	1.30	-10.04	77.7%	4 72 4
when the rolat 2	VUII-14	Jun_70	1734	0C1-84	3.84 1.71	1 50	۸.	100 09	24.1 77 7
North Ann- 7	17.	348-80 No. 70	1432	UC1-04	9,09 E ED	1.30	.04	100.07	31.1
nur ur Hillis J	vu1-14	047-70 Con-70	1417	UCT-85	3.37 / #n	(EA	05 74	// 7 4	}
		38b-14	1479	нрг-86	5.37	1.30	23.77	-00.32	1

7

						Est.		Cost	·	
		C.P.	Date of	Est	imated	Years	Years	Growth	Progress	ž
	Unit Name	issued	Estimate	Cost	003	to COD	Elapsed	Rate	Rate	Ссер
		******	******							
	River Bend I	Har-77	Jun-78	1172	Sep-84	6.26				5
			Nar-80	1679	Apr-84	4.07	1.75	22.8%	123.9%	11.7
	St. Lucie 2	Nay-77	Dec-78	919	May-83	4.41				16.8
			Jun-80	1100	May-83	2.91	1.50	12.72	99.9%	45.1
	Wolf Creek	May-77	Mar-77	1029	Apr-83	4.08				1
			Dec-79	1296	Apr-83	3.33	2.75	8.7%	99.9%	47.9
	Hartsville A-1	Hay-77	Sep-78	853	Jun-83	4.75				13
			Sep-79	1418	Jul -86	6.84	1.00	66.32	-208.5%	21
	Hartsville A-2	Hay-77	Sep-78	853	Jun-84	5.75				
			Sep-79	1418	Jul -87	7.84	1.00	66.3%	-208.21	8
	Perry 1	May-77	Dec-78	1159	May-83	4.42				33.2
			Jun-80	1701	May-84	3.92	1,50	29.17	33.2%	59.4
	Perry 2	May-77	Sep~78	1318	Nay-85	6.67				20.2
			Jun-80	2157	May-88	7.92	1.75	32.5%	-71.5%	46.5
	St. Lucie 2	Nay-77	Dec-78	919	May-83	4.42				16.8
			Jun-80	1100	May-83	2.92	1.50	12.7%	100.0%	45.1
	Hartsville B-1	Hay-77	Sep-77	854	Dec-83	6.25				NA
			Sep-79	1418	Jun-89	9.75	2.00	28.9%	-175.2%	15
	Hartsville B-2	May-77	Sep-77	854	Dec-84	7.25				NA
		•	Sep-79	1418	Jun-90	10.76	2.00	28.9%	-175.1%	5
	Cherokee 1	Dec-77	Har-78	392	Jan-85	5.84				1
			Har-80	402	Jan-90	7.84	2,00	1.3%	-149.8%	15
	Cherokee 2	Dec-77	Har-78	392	Jan-87	8.84				2
			Har-80	402	Jan-92	11.84	2.00	1.3%	-149.8%	1
	Cherokee 3	Dec-77	Har -78	392	Jan-89	10.85				1
			Nar-80	402	Jan-94	13.85	2.00	1.3%	-149.8%	1
	Shearon Harris 1	Jan-78	Dec -77	1039	Nar-84	6.25				1.7
			Jun-80	1208	Bar-85	4.75	2.50	6.22	50.02	32.8
	Shearon Harris 2	Jan-78	Dec-77	1039	Mar-86	6.25				1.7
			Jun-80	1208	Mar -88	4.75	2.50	6.2%	60.02	3.7
	Shorehaa	Jan-78	Dec -78	1337	Der-80	2.00				78
			Jun-80	1213	Feb-83	2.67	1.50	-6.3%	-44.52	85.5
	Shearon Harris 3	Jan-78	Dec-77	1039	Mar-90	12.25				0.5
			Jun-80	1208	Har-94	13.76	2.50	6.2%	-60.02	0.5
	Shearon Harris 4	Jan-78	Dec-77	1039	Nar-88	10.25				0.5
			Jun-80	1208	Har -92	11.75	2,50	6.2%	-60.0%	0.5
	Phions Bend 1	Jan-78	Sen-78	872	Aug-84	5.92				1
• .	,		Sen-79	1440	Har-87	7.50	1.00	65.12	-158.17	7
	Phions Bend 2	Jan-78	Sen-78	872	Aug-85	6.92			144114	Q
			Jun-80	1440	Hav-94	13.92	1.75	33.22	-400.07	4
	WNP 4	Feh-78	Sen~78	1982	Jan-85	6.75		00124		7.6
			Har-80	3086	Jun-84	-6-25	1.50	34.4%	33.37	14.5
	Narhle Hill 1	Anr-78	Jun-79	511	0rt-97	4.34	1100	WIII IA	00104	8
	NA DIL MILL L		Jun-80	2001	Ner-94	4.50	2.00	97 77	-108 27	20
	Harbla Hill 9	Apr-79	Har-70	 gtg	Jan-93	1 91	~* VV	*****	TAGETH	57
	itat leas tiàl à	11pr / U	Jun~90	1397	Ber-97	7 50	\$ 75	52 07	-212 27	5.2
	HNP 3	Anr-79	Har-70	1040	Ner-91	5.74	1.10	44.04	1148 <i>1</i> 14	11 2
	THE Y	טי ואוו	Sen~79	7754	Ner-21	5,25	0,50	33.87	100.07	14 4
	HNP 5	Anr -79	Har-79	7774	Jun-84	7.74		00.02	100499	1.9
			Jun-RA	3705	Jun-97	7_00	1.25	50.27	70.37	6.7
				41.40	- MIT 107			******	FA1AW	w# /

TABLE 5.2: UNITS UNDER CONSTRUCTION in June, 1980.

Unit Name	C.P. issued	Date of Estimate	Estia Cost	ated CDD	Est. Years to CDD	Years Elapsed	Cost Growth P Rate	rogress Rate	X Coep
	AVERAGE	5							
	Simple	:				1.83	19.7%	-10.5%	
	Neight	ed by year	5:			-	17.7%	-0.9%	
	NUMBER	OF DATAPOI	NTS:			77	77	77	

* Constructor=UE&C
Architect/Engineer=UE&C

TABLE 5.3: UNITS WITH CONSTRUCTION PERMIT OR LIMITED WORK AUTHORIZATION IN DECEMBER, 1980 (PERCENT COMPLETE <= 15%).

Unit Name	cp/lwa issue date	% complete at 12/76	Estimated COD
Seabrook 2	cp: Jul-76	7.7%	Jun-85
River Bend 2 Clinton 2 Cherokee 2 Cherokee 3 Callaway 2 Shearon Harris 3 Shearon Harris 4	cp: Sep-75 cp: Feb-76 cp: Dec-77 cp: Dec-77 cp: Apr-76 cp: Jan-78 cp: Jan-78	0.0% 0.0% 0.0% 0.0% 0.5% 0.5% 0.5%	indef. indef. Jan-93 indef. indef. [1] Mar-94 Mar-92
Bailly 1 Shearon Harris 2 Yellow Creek 2 Vogtle 2 Phipps Bend 2 Hartsville B-2 North Anna 3 WPPSS 5 Harble Hill 2	cp: May-74 cp: Jan-78 cp: Nov-78 cp: Jun-74 cp: Jan-78 cp: May-77 cp: Jul-74 cp: Apr-78 cp: Apr-78 cp: Apr-78	1.0% 3.0% 3.0% 4.4% 5.0% 7.0% 8.8% 9.0% 11.0%	indef. [1] Mar-88 indef. Jun-88 indef. indef. Jun-89 Sep-87 indef. [1] Feb-87
AVERAGES	Feb-77	4.0%	Jan-90

Source: Nuclear News, February, 1981 Notes: [1] Nuclear Industry, January, 1981.

.

TABLE 5.4: PLANT CANCELATIONS: 1977-1980

Unit Name	Year of Cancelation	Construction Status	% Complete
Alan Barton 1 Alan Barton 2 Douglas Point 1 Ft. Calhoun 2 South Dade 1 South Dade 2 Surry 3 Surry 4 Sears Island	1977	order order order order order cp order	୦ ୫ ୯ ୫
Atlantic 1 Atlantic 2 Blue Hills 1 Blue Hills 2 Haven 2 Islote S.R. 1 S.R. 2 Sundesert 1 Sundesert 2 PSE&G Co. unit 1 PSE&G Co. unit 2 Mm. E. Zimmer 2	1978	order order order order order order order order order order order order order	
Greene County MEP-1 NEP-2 Palo Verde 4 Palc Verde 5 Tyrone 1	1979	order order order order order op	08
Davis-Besse 2 Davis-Besse 3 Erie 1 Erie 2	1980	limited work aut limited work aut order order	h. 0% h. 0%
Forked River 1 Greenwood 2 Greenwood 3 Haven 1 Jamesport 1 Jamesport 2 Montague 1		cp order order order cp order	5% 0% 0%
Montague 2 New Haven 1 New Haven 2 North Anna 4 Sterling		order order cp cp	<u>4</u> 용 0 용

Source: Atomic Industrial Forum, "Background Info", January, 1984.

- TABLE 6.1: COST AND SHEDULE SLIPPAGE, Completed Plants, with COD between July, 1980 and Dec. 1982

	Actu	Actuals C		Date of	Estimated		Est.	Nominal		Duration	ž	
Unit Hame	Cost	COD	issued	Estinate	Cost	COD	Years	Cost	Nyopia	Ratio	Соар	
							-to COD	Ratio	Factor	-		
North Anna 2	532	Dec-80	Feb-71	Sep-71	191	Jun-75	3.75	2.79	1.314	2.47	7.8	
Farley 2	781	Jul-81	Aug-72	Har-73	268	Apr-77	4.08	2.91	1.299	2.04	5.3	
Sequoyah 1	984	Jul -81	Hay-70	Jun-70	187	Apr-74	3.83	5.27	1.543	2.89	5.0	
Salem 2 #	820	Oct-81	Sep-68	Dec-67	128	Nar-73	5.25	6.41	1.425	2.64	0.0	
McGuire 1	906	Dec-81	Feb-73	Sep-73	220	Nev-76	3.17	4.12	1.563	2.50	22.2	
Seguoyah 2	623	Jun-82	Hay-70	Jun-70	187	Apr-74	3.83	3.34	1.370	3.13	5.0	
Lasalle 1	1336	0ct-82	Sep-73	Sep-73	430	Dec-78	5.25	3.11	1.241	1.73	0.0	
AVERAGE (1969 - 12/19	782)							2.40	1.26	1.79		
NUMBER OF DATAPOINTS:								56	56	68		
AVERAGE (7/1980 - 12/	(1982)						•	3.99	1.39	2.50		
NUMBER OF DATAPOINTS:								· 7	7	7		

+ Constructor=UE&C

					Est.		Cost		
	С.Р.	Date of	Est	imated	Years	Years	Growth P	rogress	X.
Unit Name	issued	Estimate	Cost	COD	to COD	Elapsed	Rate	Rate	Ссар
		H 00			· · · ·				
DIADIO CANYON I	нрг-за	nar~80	4320	100-01	1.20	A AA	05 18	A 48	77.2
	u =^	nar -82	15/8	งแก-ชง	1.23	2.00	23.14	0.04	34.9
Sequoyan 2	flay-/0	Sep-/9	442	Jun-81	1./5				84.0
		Dec-80	1094	Jul-82	1.58	1.25	106.21	13.62	96.0
Diablo Canyon 2	Dec-70	Dec-79	721	Jun-81	1.50				97.9
		Dec-82	1126	Jun-84	1.50	3.00	16.0%	0.0%	95
Ferai 2	Sep-72	Jun-80	1283	Mar-82	1.75				79.4
		Sep-82	2346	Nov-83	1.17	2.25	30.7%	25.8%	92
ligger 1	Uct-/2	JUN-80	1027	Apr-82	1.83				43.8
		Sep-82	1667	Jan-84	1.33	2.25	24.02	22.17	98.26
Midland 1	0ec-72	Jun-76	700	Nar -82	5.75				13
		flar -82	1695	Ju1-84	2.33	3./3	16.62	59.47	/4
fidland 2	Dec-72	Jun-76	700	Mar-81	4.75				16
		Sep-82	1695	Dec-83	1.25	6.25	15.22	56.0%	84
Watts Bar I	Jan-/S	Jun-80	720	flay-82	1.92			1.4 714	8/
		Sep-82	1697	NOV-84	2.17	2,23	45.41	-11.34	8/
Watts Bar Z	Jan-/S	JUN-80	/20	160-87	2.6/	5 65		05 AV	12
N.D.1 . D	F-1 77	Sep-82	1577	DEC-93	3.23	2.23	40.44	-13.84	34
ACGUITE 2	Feb-13	971-90 D 00	- 533 - 	Sep-82	2.23	5 EA	07 14	1A 19	80 00
0	H 77	865-82	1067	nar-84	1.23	2,50	23.12	40.14	78
Sugner 1	nar-/J		827	JUN-01	1.23	0 00	10 58	1/ 54	74.8
ר מווו	¥	Vec-82	1313	1 07	V./7	2.80	19.07	15.3%	ה בת
#KF 2	nar~/3	308-80	2392	1982-82 1982-82	2,38	1 44	17. AN	0.79	03.1 05 0
1	Car. 77	Jun -04	2784	reg~84	2.0/	1.00	10.44	-0.34	01.7 00 A
Lasalle l	seb-lo	JUN-80 Dec 00	1107	JUB~81	1,00	A 5A	1.8 . 44	11. 14	70.V 00 A
1-0-11- 7	Par 77	Dec-00	1104	HPF-02	1.33	0.30	14.4%	-00.11	77.0
	3ey-73	008-00 Dee-01	100	JUR-82 0=1-07	2.00	1 54	10 54	11 17	/0 01
Son Booles 7	0+-73	Mar-00	1027	066-03 Nor-01	1.03	1.30	17.34	11+14	97 04 A
San Ghone I	022-13	Nai -00 Bor-07	1017 7507	022-01 Re4_07	1.70	2 90	17 67	7.8 AY	00.0
San Snofra 3	8-+-73	Vec-oz Mar-QA	1712	120-03	71.V 70 C	1,00	12.04	VT178	10
	000 10	Ner-92	1440	Van-00 Nov-97	0 42	2 75	17 77	97 97	00 97
Sucouphanna I	Nov-73	Gen-70	1000	Jan-87	7 7.8	1.10	12.24	40104	70.0
ousquenanna i	101 10	Der-97	2007	Nav-97	1.37 A 77	7 70	10 97	59 67	92 0
Sucouchanna 7	Nov-73	Jun-90	1097	Aun-97	2.17	0100	14194	0110#	53
		Jun-97	1598	Noy 01 Nov-94	2.47	2.00	21.5%	-12.5%	48
Beaver Valley 2	Nav-74	Dec-79	2024	Hav-86	6.42		20000		35.2
Parter forter a		Dec-82	3074	May-86	3.42	3.00	15.02	100.02	58.1
Bailly Nuclear 1	May-74	Sen-79	1100	Jun-87	7.75				0.5
		Jun-81	1815	Jun-89	8.01	1.75	33.12	-14.47	0.5
Limerick 1	Jun-74	Jun-79	1695	Apr-93	3.83				52
		Dec-82	2657	Apr-85	2.33	3.50	13.72	42.8%	83.1
Limerick 2	Jun-74	Jun-79	909	Apr-85	5.83				35
		Dec-82	3126	Oct-88	5.83	3.50	42.3%	0.0%	30
Vogtle 1	Jun-74	Jun-80	1746	Hav-85	4.92				10
-		Dec-82	3722	Har-87	4,25	2.50	35.3Z	26.7%	45
Vogtle 2	Jun-74	Jun-80	988	Nov-87	7.42				4
-		Dec-82	1476	Sep-88	5.75	2.50	17.41	66.6%	15
Nine Mile Point 2	Jun-74	Jun-80	1953	Oct-84	4.34				37.7
		Dec-82	4174	Oct-86	3,84	2,50	35.5I	20.02	56.7
North Anna 3	Jul-74	Sep-79	1428	Apr-86	6.59				7
•		Dec-82	4053	Oct-89	6.84	3,25	37.8%	-7.8%	8

1

					Est,		Cost		
	С.Р.	Date of	Est	igated	Years	Years	Growth	Pragress	ž
Unit Name	issued	Estimate	Cost	COD	to COD	Elapsed	Rate	Rate	Coap
		~~~~~			~~~~~~				
Millstone 3	Aug-74	Sep-78	1980	May-86	7.67				24.5
		Dec-82	3539	May-86	3.42	4.25	14.6%	100.0%	60.3
Grand Gulf 1	Sep-74	Dec-79	1203	Apr - 82	2.33				80
		Sep-82	2859	Dec-83	1.25	2.75	36.9%	39.3%	99
Hope Creek 1	Nov-74	Jun-80	4310	Dec-86	6.50				23.5
		Dec-82	3780	Dec-86	4.00	2.50	-5.1%	99.9%	60.6
Waterford 3	Nov-74	Sep-79	1229	Feb-82	2.42				69.5
		Sep-82	2057	Jan-84	1.33	3.00	18.71	36,2%	93.9
Bellefonte 1	Dec-74	Sep-79	1001	Sep-83	4.00				69
		Sep-82	2214	Nov-86	4.17	3.00	30.32	-5.6%	81
Bellefonte 2	Dec-74	Sep-79	1001	Jun-84	4.75				48
		Sep-82	2214	Nov-87	5.17	3.00	30.31	-13.9%	60
Comanche Peak 1	Dec-74	Har-79	850	Jun-81	2.25				68.8
		Jun-82	1720	Jun-84	2.00	3.25	24.2%	7.71	91
Comanche Peak 2	Dec-74	Mar -79	850	Jun-83	4.25		•		26.4
		Jun-82	1720	Jun-85	3.00	3.25	24.21	38.5%	55
Catawba l	Aug-75	Jun-80	754	Mar-84	3.75				73
	-	0ec-82	1800	Jun-85	2.50	2.50	41.6%	49.9%	92
Catamba 2	Aug-75	Jun-80	754	Sep-85	5.25				15
		Dec-82	2100	Jun-87	4.50	2.50	50.62	30.1%	47
South Texas I	Dec-75	Seo-79	1208	Feb-84	4,42				48.3
		Dec-81	1786	Feb-84	2.17	2.25	17.02	99.9%	50
South Texas 2	Dec-75	Sep-79	1208	Feb-86	6.42				15
		Dec-81	1717	Feb-86	4.17	2.25	16.9%	99.9%	18
州杨山 丁 壬壬	Dec-75	Jun-80	2498	Jun-85	5,00				41.1
		Jun-81	3460	Jun-86	5.00	1.00	38.5%	0.0%	51
Braidwood l	Dec-75	Jun-80	1585	Oct-85	5.34				56
		Dec-81	1635	8ct-85	3.84	1.50	2.1%	100.0%	51
Braidwood 2	Dec-75	Jun-80	1011	Oct-86	5.34	••••			44
		Dec-81	1076	0ct-86	4.84	1.50	4,2%	100.0%	48
Byron 1	Dec-75	Jun-80	1483	Oct-83	3.33				69
,		Dec-81	1635	Feb-84	2,17	1.50	6.7%	77.6%	79
Byron 2	Dec-75	Jun-80	922	Oct-84	4.34				55
·		Dec-81	1093	Feb-85	3.17	1.50	12.01	77.6%	63
Clinton 1	Feb-76	Mar-80	1397	Dec-82	2.75				66
		Jun-82	1819	Sep-84	2.25	2.25	12.4%	22.1%	83
Clinton 2	Feb-76	Dec-77	1059	Jun-88	10.51				0
		Mar-82	2181	Jun-83	6.26	4.25	18.5%	100.0%	3
Callaway i	Apr-76	Nar-80	1261	0ct-82	2.58				64
•	I	Dec-82	2850	<b>J</b> นก-85	2.50	2,75	34.5%	3.0%	86
Callaway 2	Apr-76	Jun-80	1609	Jun-88	8.00				0.7
·		Mar-81	1688	Apr-90	9.08	0.75	6.6%	-144.8%	0.7
Palo Verde 1	Hay-76	Jun-80	1429	Nay-83	2.92				68.3
	1	Nar - 82	1670	May-83	1.17	1.75	9.32	100.12	96.5
Palo Verde 2	May-75	Jun-80	820	Hay-84	3.92	_			37.7
	4	Mar-82	1136	Nay-84	2.17	1.75	20.5%	100.12	82.5
Palo Verde 3	Nay-76	Jun-80	1125	Jun-86	6.00		-		10.8
		Dec-82	2474	Nay-86	3.42	2.50	37.0%	103.37	52.5
Seabrook 1 # ##	Jul-75	Jun-80	1493	Apr-83	2.83				39.7
		Dec~81	1735	Feb-84	2.17	1.50	10.52	44.2%	54
Seabrook 2 # ##	Jul-76	Jun-80	1558	Feb-85	4.67				7.55
		n01	1075	Nov-RA	4.42	1.50	11.12	17.21	9.2

					Est.		Cost		
	С.Р.	Date of	Esti	sated	Years	Years	Growth P	rogress	ž
Unit Name	issued	Estimate	Cost	COD	to COD	Elapsed	Rate	Rate	Соер
Diver Dend 1	 X-r-77	Nor-80	1679	Apr -94	 8 0.0				11 9
NITCH DENUL	1101 ) )	Gen-87	2474	8pr-85	7.07	2 50	14 77	33 47	51.4
Holf Crook	M-11-77	Dec -79	1202	Apr-97	3.23 7.77	1100	10114	00114	47 9
HUIT CLEEK	1169-77	Noc-92	2820	Apr - 05	0.00 7 77	7 00	27 17	<b>₹</b> ₹ <b>₹</b> ₹	27 78
Hartevilla A-1	Mov-77	Gen-79	1419	301-84	1 94	0100		00104	21
Hai Cotific nº 1	1167 33	Sep-91	2779	001 00 Apr-91	0.07 Q 50	2 00	54 NY	-137.32	35
Hartsville 6-7	H=v-77	Gen-79	1412	Jul - 87	7 94	1100		10/104	8
HBI (211176 H T	nay ii	Sep 71	2729	001 07 0nr-97	10 59	2 00	5.4 <i>6</i> 7	-137 5%	27
Porry 1	Hay-77	Jun-90	1701	Hev-94	7 97	2100	01104	10/10/	50.4
	1127 11	Con-Qi	1001	Hay 07	5.72	1 25	2 57	100 07	79.9
Borry ?	H-1-77	Jun-90	2157	May 07 May 90	7 00	1110	0104	700108	46.5
reny z	nayin	Jun-91	1000	1107 00 May 29	1.11	1 00	-16 27	100 07	57 3
Ct lucia 7	Nov	Jun-90	1100	Hay-00 Hay-07	2.12	1.00	10.14	100108	15 1
St. Lucie 1	1124-11	0011-0V Con_97	1100	- nay-ou - Mau-03	1.71 A LL	2 25	12 67	100 07	29 7 7 00
Charakan t	Noc -77	955-07 250-07	1720	135-00	0.00	1.13	11.01	100104	15
Cherokee I ·	DAC-11	00-150	4VI 770	1-5-00	7.04	0.50	778 97	100 07	17
Charoline 7	N77	8	127	3411-7V 135-07	1.07	0.00	171102	100108	1
cherokee z	NAC-11	Con-00	492 007	10411-71 105-07	11.07	0.50	224 97	-02 07	3
Obacalina Z	n77	aep-ov Mar-00	117	1	12.34	0.30	174,0%	-10114	1
cueroxee 2	yec-//	00-160	4977	Ja- DE	13.03	A =0	111 01	-00 44	1
AL	1	3ep-av	111	- 338773 - ₩ 05	14.04	0.30	124.04	-70.4%	ג מריק
Shearon Harris 1	3su-18	JUR-8V	1208	Har-83	4./3 7.05	9 EA	75 / 4	10 04	32.0
<b>0</b> 1 11 1 0	1	96C-85	1000	nar-do H 00	3.23	2.30	33.8%	84.44	ם; דיד
Snearon Harris 2	998-19	<u> 188-90</u> D 00	1208	nar-88	9./3	0 64	<b>77 0</b> 4	100 04	۲.د لا
01 1		Dec-dr	2023	Rar-70	7.23	2.00	22.7%	-100.04	יי חב ב
Shorehan	Jan-∖8	JUN-80	1213	160-83	2.8/	5 50	11 14	11 04	23.3 05.1
<b>N</b> · · · · ·		Vec-82	2130	Dec-92	1.00	2130	40.44	00.04	73.0
Phipps Bend 1	Jan-/8	Sep-/9	1440	nar-8/	/.30		C1 24	00 53	/
000	C. 1. 70	Mar -81	2683	F 80-84	1.73	1.30	31.34	-19.34	11 11 E
4N7 4	160-19	nar-av	2086	งนก−ชอ	5.23	1.05	00.14	30 19	14.3
<b>N</b> 13 11-11 1	4 30	JUR-81	4231	งขุก-8/	6,00	1.20	27.12	20.14	20.3
marbie Hill I	Hpr-/8	408-80	2001	96-33G	5.30	5 55	13 74	166 64	20 10 0
NL1 0111 0	A 30	360-87 Jun 00	1123	Nec-86	4.23	2.23	19.74	100.04	41.7 n
marble Hill Z	нрг-78	JUN-8V D DD	1080	Vec-8/	1.30	0 50		<u>ወለ ለ</u> ሃ	ד ד דר
1000 3	A	Dec-02	2260	งนก-88	3.30	7,30	21.1%	80.04	11.3
相談して	Ab1-19	36b-14	2236	D6C-84	3.23	1 75	71 04	11 09	10.0
1000 P	A	JUB-81	2205	NEC-86	3.30	1./5	34.7%	-14.24	31 / 7
税損先 つ	Ab1-19	JUN-80	3703	Jun-8/	/.00	1 00	74 04	10 07	5./
		10-20	4843	Dec-9/	5.00	1,00	30.8%	47.74	14.5
Tellow Greek 1	NOA-19	36b-14	1443	NGY-83	5.1/	7 00	10 79	17 04	77
	1. 70	565-97 0 30	1429	UET-90	8.09	2.00	10.34	-03.04	აა ი
Tellow Creek Z	NOA-19	Sep-79 Sep-81	1443 1938	нрг -88 Арг -88	8.39 6.59	2.00	15.8%	100.0%	1
AVERAGES:						5 7A	79 E¥	90 EV	
orehis.						2.30	مک بند ک	277 - 76	
	-						9E 74	77 07	
Heighted by year	5 NTC+					77	25.32	33.9%	

• .

.

+ Constructor=UE&C

## Architect/Engineer=UE&C
Unit Name	cp/lwa	issue date	% complete at 12/76	Estimated COD
Seabrook 2	cp:	Jul-67	13.0%	Mar-87
River Bend 2 Clinton 2 Yellow Creek 2 Shearon Harris 2 Vogtle 2 South Texas 2 Cherokee 1 Grand Gulf 2 Marble Hill 2 Limerick 2		Sep-75 Feb-76 Nov-78 Jan-78 Jun-74 Dec-75 Dec-77 Sep-74 Apr-78 Jun-75	0.0% 0.0% 3.0% 4.0% 14.0% 16.0% 18.0% 25.0% 26.0% 30.0%	indef. indef. Mar-90 Sep-88 Jun-89 indef. Jun-88 Oct-87
AVERAGES All Units Units With Schedul	.e	Jul-76 Jun-76	 13.6% 18.0%	Dec-88

TABLE 6.3: UNITS WITH CONSTRUCTION PERMIT OR LIMITED WORK AUTHORIZATION IN DECEMBER, 1982 (PERCENT COMPLETE <= 30%).

Source: Nuclear News, February 1983

Unit Name	Year of Cancelation	Construction Status	% Complete
Bailly Nuclear Callaway 2 Shearon Harris Shearon Harris Hope Creek 2 Pilgrim 2	1 1981 3 4	cp cp cp cp cp order	1.0% 1.0% 1.0% 1.0% 19.0%
Allens Creek 1 Black Fox 1 Black Fox 2 Cherokee 2 Cherokee 3 Hartsville B-1 Hartsville B-2 North Anna 3 Pebble Springs Pebble Springs Perkins 1 Perkins 2 Perkins 3 Phipps Bend 1 Phipps Bend 1 Phipps Bend 2 Vandalia WPPSS 5	1982 1 2	order lwa lwa cp cp cp cp cp order order order order order cp cp cp cp	<1% <1% 0.0% 0.0% 17.0% 7.0% 7.0% 7.0% 23.0% 15.0%
Source: Atomic	Industrial Forum,	"Background Info",	January, 1984.

### TABLE 7.1: BUSBAR COST COMPARISON, 1976

	Seabro	sok 2	Coal	Oil						
	A	8	C	D						
Based on PSNH Cost Estimate of:	Dec-76	Dec~76								
PLC Revised Cost Estimate:	\$3,122 [1]	\$3,122	\$950 [2]							
PLC Revised COD Estimate:	Mar-88 [3]	Nar -88	Mar-88 [4]							
In-core Fuel	\$218 (5)	\$218								
Total Investment	\$3,340	\$3,340								
Sunk Cost \$22 plus AFUDC to COD	\$65	\$65								
Net Investment	\$3,275	\$3,275	\$950	.,						
Levelized Carrying Charges:	18.7% [6]	18.7%	18.7%							
Annual Cost:	\$612	\$612	\$178							
08H:	\$47 [7]	\$47	\$65 [7]							
Capacity Factor:	73.2% [5]	68.3% [8]	73.2% [5]							
Non-fuel cents/kwh:	8.94	9.58	4.74							
Fuel:	1.60 [9]	1.60	5.14 [10]	7.28 [10]						
Total cents/k#h:	10.54	11.18	9.88							
Notes: [1] Average of Table 3	.l results for	Seabrook 2.								
[6] Bond rate = average of Aaa and Baa. Cost of money = bond rate + 1.6% = discount rate, from NEPLAN (1976) - 10.7%										
Carrying Charge = =	cost of money + 18.7%	8%, from NEPLA	¥ (1976)							
	1 71 1 - 1	Sale Commenter All The All	1 1(07/1 1							

* All other notes are listed after Tables 7.1 - 7.4. All dollar costs are in \$ million for the unit. Inflation = 6.2% Fuel Inflation= 6.2% Inflation, 1980 to COD, with 30 year levelization = 2.913 Fuel Inflation= 2.913 -

#### TABLE 7.2: BUSBAR COST COMPARISON, 1978

	Seabro	ok 2	Coal	0i1
	A	8	С	D
Based on PSNH Cost Estimate of:	Jan-79	Jan-79		
PLC Revised Cost Estimate:	\$4,355 [1]	\$4,355	\$1,105 [2]	
PLC Revised COD Estimate:	Sep-90 [3]	Sep-90	Sep-90 [4]	
In-core Fuel	\$253 [5]	\$253		
Total Investment	\$4,608	\$4,608	\$1,105	
Sunk Cost \$87 with AFUDC to CDD	\$266	\$266		
Net Investment	\$4,342	\$4,342		
Levelized Carrying Charges:	18.7% [6]	18.72	18.7%	
Annual Cost:	\$812	\$812	\$207	
0&M:	<b>\$</b> 55 [7]	\$55	\$76 [7]	
Capacity Factor:	73.2% [5]	67.3% [8]	73.2% [5]	
Non-fuel cents/kwh:	11.76	12,79	5.51	
Fuel:	1.86 [9]	1.86	5.97 [10]	8.47 [10]
Total cents/kwh:	13.62	14.65	11.48	8.47

Notes: [1] Average of myopia and cost ratio results for Seabrook 2 in Table 4.1, for all units through 1978, and all units in 1977 and 1978; total of four results.

> [6] Bond rate = average of Aaa and Baa. Cost of goney = bond rate + 1.6% = discount rate, from NEPLAN (1976). 10.7% Ξ Carrying charge = cost of money + 3%, from NEPLAN (1976). = 18.7% [10] Coal price 1980 = 1.76 cents/kwh, from NEPLAN (1976) fuel costs at 9800 BTU/kwh. 2.50 ,from Exh. Webb-17, PUE 82-266, 3.59 cents 0il price 1980 = in 1986, deflated at 5.2% to 1980. # All other notes are listed after Tables 7.1 - 7.4. = 6.2% fuel = 6.2% oil = Inflation

Inflation = 6.2% fuel = 6.2% oil = 6.2% Inflation, 1980 to COD, with 30 year levelization = 3.384 = 3.384 = 3.384

# TABLE 7.3: BUSBAR COST COMPARISON, 1980

1

. . . .

		Seabro	ok 2	Coal	Dil	
		A	B	C	D	
Based on P	SNH Cost Estimate of:	Apr-80	Apr-80			
PLC Revise	d Cost Estimate:	\$3,987 [1]	\$3,987	\$970 [2]		
PLC Revise	d COD Estimate:	Jul-88 [3]	Jul-88	Jul-88 [4]		
In-core Fu	2]	\$199 [5]	\$199			
Total Inve	stment	\$4,186	\$4,186			
Sunk Cost	\$247 plus AFUDC to COD	\$511	\$511			
Net Invest	sent	\$3,676	\$3,676	<b>\$</b> 970		
Levelized (	Carrying Charges:	22.4% [6]	22.4%	22.4%		
Annual Cos	t:	\$823	\$823	\$217		
024:		\$43 [7]	<b>\$</b> 43	\$60 [7]		
Capacity F	actor:	70.1% [11]	64.47 [8]	67.1% [5]		
Non-fuel ce	ents/kwh:	12.26	13.35	5.89		
Fuel:		1.47 [9]	1.47	4.71 [10]	28.29	
Total cents	s/kwh:	13.73	14.82	10.60	28.29	
Notes:	[1] Average of myopia from Table 5.1, two results.	and cost ratio and all experie	results for Sea nce through 198	brook 2, 0;		
	[6] Bond rate = Cost of money = =	average of Aaa bond rate + 1.6 NEPLAN (19 14.4%	and Baa. % = discount ra 76).	te, from		
	Carrying charge = - =	cost of money + 22.4%	8%, from NEPLA	N (1976).		
	[10] Coal price 1980 = Oil price 1980 =	1.76 cents/ 5.44 , from in 1988, de	kwh, from NEPLA Exh. Webb-18, flated by 10% t	N (1975). PUC 82-265, 11.0 o 1980.	56 cents	
	[11] Forced outage rate NEPOOL (1979).	s from NEPLAN (	1976), maintena	nce from		
	# All other notes are Inflation =.	e listed after 6.2%	Tables 7.1 - 7. fuel inf. 6.2%	4. oil inf.	10.0%	
	intiacion, 1980 to	2.667	ear 10701123010 2.447		5.201	

	Seabroo	k 2 .	Coal	0i 1
	A	8	с	D
Based on PSNH Cost Estimate of:	Dec-82	Dec-82		
PLC Revised Cost Estimate:	\$9,378 [1]	<b>\$9,</b> 378	\$2,187 [2]	
PLC Revised COD Estimate:	Oct-92 [3]	Oct-92	Oct-92 [4]	
In-core Fuel				
Sunk Cost \$508 plus AFUDC to COD	\$1,575	\$1,576		
Net Investment	\$7,802	\$7,802	\$2,187	
Levelized Carrying Charges:	21.6% [6]	21.6%	21.6%	
Annual Cost:	\$1,581	\$1,681	\$471	
O&H:	\$79 [7]	\$79	- \$192 [7]	
Capacity Factor:	66.1% [11]	62.07 [8]	66.7% [5]	
Non-fuel cents/kwh:	26.44	28.20	14.19	
Fuel:	3.41 [9]	3.41	9.95 [10]	29.27
Total cents/kwh:	29.85	31.61	24.14	29.27

Notes:

1.11.1

1. . . . . . . B

[1] Average of myopia and cost ratio results for Seabrook 2, from Table 6.1, all experience through 1982, and all experience from mid-1980 to 1982; four results.

[6] Bond rate = average of Aaa and Baa. Cost of money = bond rate +  $1.6\chi$  = discount rate, from NEPLAN (1982) =  $16.6\chi$ Carrying charge = cost of money + 5 $\chi$ , from NEPLAN (1982). =  $21.6\chi$ 

[10] 1980 Coal price = 1.83 cents/kwh, from NEPLAN (1982).
1980 Oil price = 4.37 cents/kwh; from Hyman 4 fuel cost
in 1982: 5.3 cents in 1982, deflated by 10.1% to 1980.

[11] Forced outage rates from NEPLAN (1976), maintenance from NEPOOL (1979).

# All other notes	are listed after	Tables 7.1 - 7.4. Refe	erences to
NEPLAN (1976)	in that list are	actually NEPLAN (1982)	for this table.
Inflation	= 9.02	fuel inf.10.0%	oil inf. 10.1%
past 1990	8.0%	8.0%	10.12
Inflation, 1980	to COD, with 30	year levelization	
·	= 4.89	5.45	6.70

#### Notes to Tables 7.1 - 7.4

· .

- *****
  - [1] See each table.
  - (2] NEPLAN (1976) projection for 800 MM coal plant in 1980\$ inflated to Seabrook 2 COD.
  - [3] Average of Table 3.1 (or 4.1 or 5.1 or 6.1, as applicable) results for all duration ratios, times projected Seabrook duration.

.

- [4] Equal to Seabrook COD, for consistency.
- [5] NEPLAN (1976).
- [6] See each table.
- [7] NEPLAN (1976) projection in 1980\$, inflated to COD and levelized over 30 years. Includes variable O&M at capacity factor specified below.
- [8] From Table 7.7, levelized over a 30 year life.
- [9] NEPLAN (1976), inflated and levelized.
- [10] See each table.

TABLE 7.5: ANNUAL NUCLEAR OWN EXPENSES, 1968-1981 (\$1000)

Indian Point 2 Indian Point 3 28167 32643 32964 54506 2460 12654 23318 28884 50357 58174

Page 1 of 3

Plant:	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981
Kewaunee							7222	8945	10727	10924	10430	11323	14843	19334
Lacrosse											2638	3041	3318	3955
Maine Yankee						4034	5232	6301	5261	8418	10817	9971	14028	20576
McGuire					·									2716
Millstone 1 Millstone 2				3256	7677	7635	9808	12065 7	14040 10929	12637 17377	16448 22288	23060 21931	24784 30163	33270 28877
Monticello				1429	2567	5006	5179	8729	6609	11109	9136	10584	21413	18261
Nise Hile Point			1716	2759	3575	4524	6251	5810	5330	9743	6382	11663	32964	26744
North Anna 1 North Anna 1&2							-				6521	19519	25390	28857
Oconee 1 Oconee 1,2¥3						911	6782	12449	16735	25038	29600	40177	52003	58789
Oyster Creek			1953	3097	3877	6311	10678	12310	10399	14833	15898	13055	37530	45254
Palisades					753	3160	11778	9601	9849	6569	15393	26344	19251	44140
Peach Botton I Peach Botton 2&3	1666	1481	1537	1731	1873	1605	1050 1791	12619	30901	46674	39306	40004	56875	72615
Piloria					144	4797	9527	7340	16633	15320	14187	18387	27785	34994
Point Beach 1 Point Beach 1&2				1309	2305	3647	5229	6159	6592	8014	7395	12461	17904	26820
Prairie Island 1 Prairie Island 1&2						101	4216	7261	15574	17090	14214	15346	23175	26791
Quad Cities 142					2033	6290	9210	14777	16723	17756	22168	23420	38686	37272
Rancho Seco								11607	7193	14000	11834	13720	28408	35542
Robinson				1918	1780	4609	4780	6360	5903	6859	14355	15142	22085	21788
Salem i Salem 142										12707	22311	42508	59684	77502
San Onofre	1481	1975	2236	2412	3518	5839	5559	8698	10490	9123	14517	11669	31089	24396
Sequoyah														19216
St. Lucie									3249	7528	15814	14392	16381	23240
Surry 1 Surry 142					607 607	5102	9878	15270	14796	15977	19323	23313	29458	31185

# TABLE 7.5: ANNUAL NUCLEAR D&M EXPENSES, 1968-1981 (\$1000)

Plant:	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981
Three Mile Island 1 Three Mile Island 2	*						3351	14226	17840	13287	17954	11842 12402	na Na	27024 8394
Trojan									5921	13628	15204	16957	25790	32205
Turkey Point 3 Turkey Point 3&4					247	4057	7660	15493	18602	15109	18602	22511	30830	30274
Versont Yankee					414	4957	5692	7682	7912	9775	11191	14208	22586	26795
Yankee-Rowe	1501	1602	1558	1745	2912	2437	3950	4557	4975	6966	7653	10150	22250	22069
Zion 1 Zion 142						ţţ	9234	12735	18268	18104	20383	28954	37655	44864

Page 3 of 3

.

	Browns Ferry	
Arkansas         Beaver Valley         Big Rock Point           1968         13924         89         287           1969         13958         32         96           1970         14324         366         1023           1971         14554         230         593           1972         14731         177         432           1973         14815         84         195		
1975 - 23021 - 198012 - 199012 - 199012 - 199012 - 199012 - 199012 - 199012 - 199012 - 199012 - 199012 - 199012 19975 - 739751 - 57724 - 198097	£.£	
1974 242704 3453 5962 284956 22907 6320 10762 552357	 79704 447	47
1977 247059 4865 7997 598716 313860 487988 23971 1064 1668 853325	445 445	.,
1978 253994 6925 10259 582408 -16308 -23883 24409 438 639 885991	32666 470	77
1979 268130 14136 18641 576367 -6041 -8067 27014 2605 3473 888350	2359 30	97
1980 NA 647575 71208 87849 27262 248 304 890428	2078 24	85
1981 916567 ** 671283 23708 26909 33356 6094 6863 892715	2287 250	03
Total Cost 1983 Total Cost 1983 Total Cost 1983 Total Year Cost Increase \$ Cost Increase \$ Cost Increase \$ Cost !	Cost 19 Increase	93 \$
Arunzwick Calvert Dille Connecticut Vacker	Pasi	
	LOOK	
1969 21241 40 121		
1970 93514 1475 4494		
1971 93649 153 395		
1972 93814 145 346		
1973 94016 202 459		
1974 106212 12196 24285		
1975 382246 428747 108921 2709 4842 538611		
1976 389118 6872 11553 430674 1927 3216 114503 5582 9317 544650	6039 1022	27
1977 707560 ## 765995 ## 117238 2735 4252 552238	7588 1189	15
1978 714928 7358 10517 777711 11716 17158 121288 4050 5931 996177 #	f <del>f</del>	
1979 750828 35900 47055 780095 2384 3183 123037 1749 2335 1025829	29652 3953	55
1980 776989 26161 31285 790988 10893 13439 137644 14607 18021 1074584	48755 5984	47
1981 803535 26546 29050 820215 29227 33173 152552 14908 16921 1096310	21725 2446	18
Total Cost 1983 Total Cost 1983 Total Cost 1983 Total	Cost 198	13
rear Lost Increase \$ Lost Increase \$ Cost Increase \$ Cost I	ncrease	\$
Cooper Crystal River Davis-Besse Peach	Bottom 2 and	3
1968		-
1969		
1970		
1971		
1972		
1973		
1974 246268 742158		
1975 269287 23019 41399 753981	11823 2113	2
1976 269287 0 0 761722	7741 1292	1
19//         302382         33095         51879         365535         271283         794094	32372 5033	2
17/8 384630 82248 120010 415173 49638 71528 635147 363864 530921 807496	13402 1962	1
17/7 38497/V -60 -80 419131 3938 5188 3261/4 -308973 -411964 813792	6296 840	1
1700 JOHJOT TI TI 421033 1724 2301 /38344 4123/0 308190 838/08 1981 383748	22315 2827 15841 7820	ı A

i.

Volume rates

E fe

Ģ

Constant of

Year	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 \$
3233		Dresden			Duane Ari	nold		Farley			Fitzpatri	ick
1768	33467	-879	-2897									
1969	33968	501	1510									
1970	116609	ŦŦ										
1971	220380	ŧŧŧ										
1972	241479	21099	51526									
1973	235397	-6082	-14110									
1974	237303	1906	3845	289821								
1975	249177	11874	21355	279730	-9091.4	-16350				NA		
1976	256493	7316	12389	279928	198	335				NA		
1977	258522	2029	3181	287561	7633.42	11966	727425			NA		
1978	276887	18365	26797	282345	-5216.4	-7611	734519	7093	10221	NA		
1979	240785	13898	18531	304768	24423	32564	751634	17115	22433	HA		
1980	303201	12416	15241	324186	17418	21381	761329	4695	11574	NA 		
1481	30/054	1821	4339	337460	15274	17202	3541781	Ŧ¥		35/141		
	Total	Cost	1983	Total	Cost	1983	Total	Cost	1983	Total	Cost	1983
Year ====	Cost	Increase	ş 	Cost 	Increase	£ 	Cost 	Increase	ş 	Cost	increase	ş 
10/0		Fort Calh	GUN	Fort	St. Vrain			Sinna			Hatch	
1700												
1707							07175					
1770							031/3	-100	_750			
1771							03073	907	7147			
1772	177974						95004	1022	2107			
1973	175900	1930	7994				87559	2444	5705			
1975	179572	1730 7777	4995				9750 9750	2004	3303			
1974	179996	374	549				93308	3558	5030	390393		
1977	179994	1098	1721				114141	20833	32391	396799	<b>44</b> 04	9842
1978	180328	334	487				121860	7719	11305	4466		
1979	180830	507	669	105610			129112	7252	9684	657326		
1980	197700	11870	14571	101459			134138	7026	3668	947147	ŧŧ	
1981	198544	5844	6582	120884			159487	23349	26501	693789		
	7-1-1	C+	1007	T-1-1	Cart	1007	T-1-1	Cash	1007	7=+=)	Cast	1007
Year	Cost	Increase	1703 ‡	Cost	Increase	1703 \$	Cost	Increase	1705	Cost	Increase	1703
2222			~~~~~	 7- Ji -				Indian Pin	 :_1 7			
1010	20210	70200101	1LE	111111	n roint i _7	-10 -10			1110 3		VSAGAUSE	
1700	12017 11100	107	400 777	120010	-3 -001	-10 1774						
1707	11000 11114	07 71	222 970	127714	-704	72730						
1770	11/04 0005A	70 01	230	120000	107 07	777						
17/1	110JV 77017	00 07	243	12017J 190070	71 717	1077						
1772	1474/	71	100	120730 771017	/00 11	1020						
1773	22770	J1 177	120 791	334703 740100	5795 5995	10404				707193		
17/4	23113	17J 02A	JG1  LAD	051VFC 010015	5225 0770	10707				202173	1194	7151
17/3	とサリンゴ ウォビオマ	00V 517	1010	01110 750#10	11127	19201	л			200007	1027	7757
17/0	14343 1271	112 7107	703 7575	33741V 778177	11172	10001	ин Ил			200001	1702 541	9323
17//	20/20 20502	1700	3333 9175	510851	11111	10150	лн Л			2030710	176 7051	5474
17/0	10300 10517	1707	2073 70	371313 -	10730 5070	7105	<u>и</u> к ИК			207790	3636 7511	1721
17/7	10601 Varoj	10	50	3/7700 700AA5	2010	ورين	ан 104			714494	1107	1777
1991	inn ₩∆			398037	68592	77852	493018			227413	12717	14322

с (: : ____

1

Ú ì.

ľ.

1010

Year	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 : \$	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 \$
1968		Lacrosse			Maine Ya	inkee		McGuire		• .	Millstone	: 1
1950 1970 1971 1972 1973 1974 1975 1976 1975 1976 1977 1978 1979 1980 1981	22991 23132 25987 26237	141 2855 250	188 3505 282	219225 221074 233710 235069 236454 237810 239987 246847 262240	1849 12636 1359 1385 1356 2177 6860 15393	3682 22586 2268 2153 1986 2907 8463 17471	905601			96819 97343 98837 98745 99244 125141 127476 139783 153135 167438 247250	524 1494 -92 499 25897 2335 12307 13352 14303 79812	1252 3391 -183 892 43225 3630 18024 17829 17646 90587
Year	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 \$
2222	******	Millstone	2		Monticel	 lo .	Nine	Mile Poi	nt		North Anni	 3
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981	418372 426271 448751 463638 464674 477586 495610	7899 22490 14887 1036 12912 18024	13184 34952 21802 1383 15929 20457	105011 104937 106869 117996 122106 123362 124390 126488 134937 139725 150407	-74 1932 11127 4110 1256 1028 2098 8449 4788 10682	-181 4482 22448 7392 2127 1611 3061 11265 5877 12030	162235 164492 162416 163212 163389 164189 181200 188087 187086 204080 217371 265015	2257 -2076 796 177 800 17011 6887 -1001 16994 13291 47644	5922 -4961 1807 352 1430 28393 10708 -1466 22692 16397 54076	781739 783864 1315869 1368195	2125 ## 0 \$2326	2785 0 57262
Year	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 \$
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981	155612 476443 476691 478793 490724 492689 498935 509438 520036	Dconee 248 2102 11931 1965 6246 10503 10598	446 3534 18331 2832 8187 12560 11598	89883 92121 92637 92766 92198 97151 108545 112583 150459 161745 200255 222963	2238 516 129 ~568 4953 11394 4038 37876 11286 38510 22708	5773 1233 293 -1131 8853 19018 6278 55470 15070 47510 25774	146687 160284 180063 182297 185272 182068 199643 199643 194651 211505 255491	13597 13597 19779 2234 2975 -3204 17575 -4992 16854 43986	31545 39902 4018 5038 -5022 25644 -6656 20689 49538	10524 10558 10719 10890 10821 11359 10485	Peach Bott	.cz 1

- .. . .

. . . .

Page 3 of 5

Year	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increas	1983 e \$
1968		Pilgria			Point Be	ach	****	Prairie	Island	 Q	uad Citi	25
1969 1970 1971 1972 1973 1974 1975 1976 1976 1977 1978 1979	321540 239329 235982 236464 241440 257579 261758 270423	-3347 482 4976 16139 4179 8670	-6665 862 8306 25093 6120 11577	73959 145348 161632 161436 164224 167125 196801 171189 170668	** 16284 -196 2788 2901 29676 -25612 -521	37779 -395 5014 4913 46519 -37371 -695	233234 405374 410207 413087 423966 425182 433659	4833 2880 10879 1216 8477	8692 4877 17054 1774 11303	200149 211539 223882 237227 241480 247194 252951 263741	11390 12343 13345 4253 5714 5757 10790.3	26425 24901 24000 7202 8957 8400 14387
1980	337785	67558 20694	83346 23489	172472	1804	2214	444766	11107	13634 13970	273075	9333.66 5449	11457
Year	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983
		Rancho Se	20		Robinson		2220202	Salee			San Onof	re
1968 1969 1970										80855 84439 84714	3584 275	11533 832
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981	343620 343438 336050 338792 339538 353574 365651	-182 -7388 2742 745 14036 12077	-322 -11964 4121 1012 17441 13716	77753 81999 82113 83272 84982 85234 89540 93410 101253 110025 113858	4246 114 1159 1710 252 4306 3870 7843 8772 3833	10369 264 2359 3075 424 6616 5577 10280 10490 4195	850318 850983 898641 938748 1758749	645 47658 40107.4 #¥	974 63637 49480	85369 85547 85821 86244 86438 95496 162475 181601 192599 211109 251119	655 178 274 423 194 9058 66979 19126 10998 18510 40010	1847 470 688 931 372 16011 108463 28746 14922 23000 45441
Year	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1783 \$
1968		Sequoyah	11 ya 11 ya 11 ya	<u> </u>	Shippingp	ort		St. Lucie			Surry	
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981	983542			- 32125 32123			470223 488230 495038 499602 505287 513640	15007 8808 4554 5585 8353	24594 12692 5982 6799 9141	246707 396860 402096 406409 408516 412236 419952 409703 556083 750969	5236 4313 2107 3720 7716 -10249 146380 194886	10656 7757 3542 5715 11119 -13434 175052 213271

Year	Total Cost	Cost Increasi	1983 e \$	Total Cost	Cost Increase	1993 \$	Total Cost	Cost Increase	1983 \$	Total Cost	Cost Increase	1983 \$
1949	Three	e Mile I	sland l	Three	e Mile Isl	and 2		Trojan		Turk	ey Point :	3 and 4
1969												
1970												
1971												
1972										108709		
1973										231239	££	
1974	398337									235496	4257	8663
1975	400928	2591	4631							244256	8760	15754
1976	399425	-1503	-2509				451978			255705	11449	19248
1977	398895	-530	-824				<b>4</b> 60566	8688	14069	267648	11943	19350
1978	361902	-36993	-54177	715466			466419	5753	9647	273441	5793	8348
1979	407936	46034	61469	719294	3828	5112	486705	20286	27523	284431	10990	14405
1980	NA			NA			503279	16574	20594	293654	9223	11030
1981	220798			358321			548765	45486	51661	305503	11849	12967
	Total	Cost	1983	Total	Cost	1983	Total	Cast	1983	Total	Cost	1983
Year	Cost	Increase	\$	Cast	Increase	\$	Cost	Increase	\$	Cost	Increase	ŧ
	Vern	iont Yank	8 <del>2</del>		Yankee-Ro	¥8		Zion				
1968				39572	12	38						
1969				39623	51	154						
1970				39636	13	36						
1971				40271	635	1838						
1972	172042			41500	1229	2937						
1973	184481	12439	28237	42507	1007	2286	275989					
1974	185158	677	1348	44473	1966	3915	565819	ŧŧ				
1975	185739	581	1038	46101	1628	2910	567987	2168	3899			
1976	193886	8147	13598	46566	465	776	571762	3775	6393			
1977	196331	2445	3801	48332	1766	2746	577903	6141	9626			
1978	198837	2508	3670	48912	580	849	586396	8493	12392			
1979	200835	1998	2668	52192	3280	4380	594941	8545	11393			
1980	217575	16740	20652	55285	3093	3816	625788	30847	37865			
1981	226115	8540	9693	1768			639723	13935	15694			

# TABLE 7.7: ANNUAL PWR CAPACITY FACTORS, 1960-01 (1)

Plant	DER	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981
San Onofre 1	450	31.9%	66.1%	77.6%	83.8%	71.17	57.5%	 79.8%	82.3%	62.6%	59.2%	68.0%	85.12	 20.7Ľ	19.82
Conn Yankee	575	59.3%	72.2%	70.2%	83.1%	85.1%	48.12	86.4%	81.8%	79.7%	79.7%	93.5%	81.7%	70.5%	80.7%
Ginna	490				63.0%	54.7%	79.12	48.9%	70.8%	47.9%	70.5%	75.0%	69.0%	71.9%	77.4%
Point Beach 1	497				75.2%	67.0%	63.0%	72.2%	67.1%	78.0%	84.7%	87.2%	70.2%	56.7%	60.12
Robinson 2	707					77.8%	60.8%	77.7%	67.3%	78.5%	68.3%	64.32	64.7%	51.7%	54.6%
Palisades	821					24.5%	33.5%	1.1%	33.8%	39.5%	70.72	36.5%	47.7%	33.07	48.2%
Point Beach 2	497						69.0%	73.0%	85.7%	86.2%	83.2%	88.6%	85.1%	82.2%	85.47
Surry 1	823						48.0%	46.0%	54.3%	60.87	69.7%	65.2%	31.32	34.2%	33.02
Turkey Point 3	745	•					51.0%	55.5%	67.07	66.0%	68.5%	69.07	44.17	67.0%	14.02
Maine Yankee	790							51.62	65.1%	85.4%	74.3%	77.4%	65.6%	63.5%	75.32
Surry 2	823							36.5%	70.1%	46.2%	61.8%	74.5%	8.5%	31.02	71.42
Oconee 1	886							51.5%	68.1%	51.3%	50.8%	65.1%	64.42	65.7%	38.5%
Indian Point 2	973							43.5%	63.9%	29.62	68.12	57.12	62.8%	55.61	39.92
Turkey Point 4	745							65.8%	61.17	57.6%	56.2%	58.0%	58.9%	58.9%	69.02
Fort Calhoun	457						•	60.3%	52.07	54.7%	74.8%	71.22	91.62	50.12	53.72
Prairie Island l	530							30.9%	79.6%	70.22	80.0%	82.12	62.72	66.7%	82.72
Zion 1	1050							37.8%	53.4%	51.6%	54.7%	73.6%	60.2%	70.6%	67.32
Кемацпее	560								68.1%	68.8%	72.3%	79.32	70.1%	73.82	76.8%
Oconee 2	886								64.0%	54.3%	49.3%	61.7%	76.9%	49.8%	66.9%
TMI I	819								77.2%	60.3%	76.12	79.1%			
Zion 2	1050								52.5%	50.3%	68.2%	73.2%	51.8%	57.2%	57.2%
Oconee 3	986								58.3%	54.9%	60.7%	70.2%	37.7%	60.2%	72.6%
Arkansas I	850								65.5%	52.1%	68.5%	70.5%	44.6%	50.7%	65.8%
Prairie Island 2	530								68.4%	57.2%	83.6%	84.5%	90.3%	74.5%	66.6%
Rancho Seco	913									27.5%	73.5%	62.4%	71.4%	55.1%	32.9%
Calvert Cliffs 1	845									84.9%	66.0%	63.2%	56.7%	61.1%	82.5%
Cook 1	1090									71.1%	50.1%	65.8%	59.3%	67.5%	71.0%
Millstone 2	828									62.4%	59.9%	62.0%	60.2%	67.1%	84.0%
Trojan	1130										65.6%	16.8%	53.2%	61.2%	64.92
Indian Point 3	873										72.2%	71.4%	62.7%	40.0%	39.7%
Beaver Valley 1	852										39.8%	33.2%	23.8%	4.0%	62.5%
St. Lucie 1	802										76.1%	71.2%	69.5%	73.8%	70.4%
Crystal River 3	825											35.9%	52.1%	46.3%	56.5%
Calvert Cliffs 2	845											70.6%	74.2%	86.4%	73.2%
Salem 1	1090											47.4%	21.4%	59.4%	64.3%
Davis-Besse 1	906											32.9%	39.4%	26.3%	55.0%
Farley 1	829											81.5%	24.0%	63.2%	36.0%
Ceek 2	1100												61.8%	69.3%	66.3%
North Anna 1	907												52.7%	70.72	58.41
Arkansas 2	912														54.1%
North Anna 2	907														71.12
Farley 2	829														72.9%
									1975		1977		1979		1981
HYERHOED:									3325		====				====
LUBUIALIYE	1_4)								61.77		62.82		62.5%		61.5%
Immature Tears ( Wature Varan /8/	1-41								34.52		50.82		60.07		34.7%
nacure rears lat	1								13.07		/0.8%		61.12		65.92

### TABLE 7.3: CENTRAL MAINE POWER CONPANY - SEABROOK 2 COST PROJECTIONS BASED ON DATA AVAILABLE JAN. 1979

Seabrook 2 Busbar Cost, cents/kWh

7-

Year	Fixed Charges	Nuclear Fuel	Total	Oil Energy Cost Cents/k₩h	Cost Difference Pilgria Oil	Cumulative Difference in PV & 10.7%
1991	15.74	1,12	16.86	4.85	12.02	10.85
1992	15.18	1.19	16.37	5.15	11.22	20.01
1993	14.66	1.26	15.93	5.46	10.46	27.72
1994	14.00	1.34	15.34	5.80	9.54	34.08
1995	13.59	1.42	15.01	6.16	8.85	39.40
1996	12.95	1.51	14,46	6.55	7.92	43,70
1997	12.51	1.61	14.12	6.95	7.17	47.22
1998	12.09	1.71	13.80	7.38	6.42	50.07
1999	11.68	1.81	13.49	7.84	5.65	52.33
2000	11.29	1.92	13.21	8.33	4,88	54.10
2001	10.87	2.04	12.91	8.84	4.07	55.43
2002	10.48	2.17	12.65	9.39	3.25	56.39
2003	10.09	2.31	12.39	9.97	2.42	57.03
2004	9.69	2.45	12.14	10.59	1.55	57.41
2005	9.57	2.60	12.17	11.25	0.92	57.61
2006	9,40	2.76	12.16	11.94	0.22	57.65
2007	9.23	2.93	12.16	12.69	-0,52	57.56
2008	9.06	3.11	12.17	13,47	-1.30	57.35
2009	8.91	3.31	12.22	14.31	-2.09	57.05
2010	8.75	3.51	12.28	15,19	-2,92	56.67
2011	8.62	3.73	12.35	16.14	-3.79	56.22
2012	8.49	3,96	12.46	17.14	-4,68	55.72
2013	8,37	4,21	12.58	18.20	-5.62	55.17

The assumptions used here are those described in Exhibit Webb-17, PUC 82-265. Fixed charges are Webb values, times (4355/ 1779).

.

### TABLE 7.9: CENTRAL NAINE POWER COMPANY - SEABROOK 2 COST PROJECTIONS BASED ON DATA AVAILABLE JANUARY 1980

Seabrook 2 Busbar Cost, cents/kWh

Year	 Fixed Charges	Nuclear Fuel	Total	Oil Energy Cost Cents/k₩h	Cost Difference Pilgrim Oil	Cumulative Difference in PV & 14.42
1988	14.41	0.94	15.34	11.66	3.68	3.22
1989	13.90	0.99	14.90	12.83	2.07	4.80
1990	13.44	1.05	14,47	14.11	0.38	5.05
1991	12.83	1.12	13.95	15.52	-1.58	4.13
1992	12.40	1.19	13.59	17.07	-3.49	2.35
1993	11.84	1,26	13,10	18.78	-5.68	-0.18
1994	11.47	1.34	12.81	20.66	-7.85	-3.24
1995	11.08	1.42	12.50	22.72	-10.22	-6.72
1996	10.71	1.51	12.22	25.00	-12.78	-10.53
1997	10.32	1.61	11.92	27.50	-15.57	-14.59
1998	9.94	1.71	11.65	30.25	-18.59	-18.82
1999	9.59	1.81	11.40	33.27	-21.87	-23.17
2000	9.22	1.92	11.14	36.60	-25.45	-27.60
2001	8.87	2.04	10.91	40.26	-27.35	-32.06
2002	8.75	2.17	10.93	44.28	-33.36	-36.50
2003	8.61	2.31	10,91	48.71	-37.80	-40.89
2004	8.44	2.45	10.89	53.58	-42.70	-45.22
2005	8.29	2.60	10.87	58.94	-48.05	-49,49
2006	8.14	2.76	10.90	64.83	-53.93	-53.68
2007	8.01	2.93	10.94	71.32	-60.37	-57.77
2008	7.88	3.11	11.00	78.45	-67.45	-61.77
2009	7.77	3.31	11.08	86.30	-75.22	-65.67
2010	7.66	3.51	11.17	94.92	-83.75	-69,47
2011	7.57	3.73	11.30	104.42	-93.12	-73.15
2012	7.47	3.96	11.43	114.86	-103.42	-76.73
2013	7,38	4.21	11.59	126.34	-114.76	-80.21
2014	7.32	4.47	11.79	138.98	-127.19	-83.57
2015	7.27	4.75	12.01	152.88	-140.86	-86.83

The assumptions used here are those described in Exhibit Webb-18, PUC 82-266. Fixed charges are Webb figures times (3987/2145).



# FIG. 7.2: LEVELIZED BUSBAR COSTS



Fuel

~

0 & M

Capital Cost

 $\mathbb{Z}$ 

Mills/kWh

### TABLE 8.1: COMPARISON OF FINANCIAL INDICATORS TO NUCLEAR COMMITMENT

INDICATOR for 1972

			UTILITY	
	PSNH	BECo	NORTHEAST	UI 
Peak Load (NH)	875	1,912	3,637	836
Sales (6¥H)	4,208	9,906	17,515	4,388
Revenues (\$ mill.)	\$91.7	\$267.8	\$473.0	\$103.7
Net Income (\$ mill.)	\$11.5	\$35.9	\$82.0	\$13.9
Net Plant in Service (\$ mill.)	\$255.4	\$793.1	ŃA	\$258.2
Book Common Equity (\$ mill.)	\$93.3	\$248.1	\$570.4	\$88.5
NW Nuclear Commitment	1235	679	1290	540
Nuclear Cost Commitment (\$ mill.)	\$516.0	\$237.2	\$458.4	\$222.6
RATID OF INDICATORS TO NUCLEAR	COMMITHENT			
Peak Load	0.7	2.8	2.8	1.5
Sales	3.4	14.5	13.6	8.1
Revenues	7.4%	39.81	36.7%	17.2%
Net Income	0.9%	5.28%	6.36%	2.57%
Net Plant in Service	0.2	1.17	NA	0.48
Common Equity	0.1	0.37	0.44	0.15
RATIO OF INDICATORS TO NUCLEAR	COST COMMITM	ENT		

Revenues 17.8% 113.82 103.21 46.6% 15.121 17.89% 6.24% Net Income 2,2% NA 1.16 Net Plant in Service 0.49 3.34 0.18 Common Equity 1.05 1.24 0.40

.

# TABLE 8.2: COMPARISON OF FINANCIAL INDICATORS TO NUCLEAR COMMITMENT

# INDICATOR for 1976

			UTILITY		
	PSNH	BECo	NORTHEAST	UI 	MPS
Peak Load (NW)	1,113	1,970	3,774	863	104
Sales (GWH)	4,714	11,711	18,896	4,499	482
Revenues (\$ mill.)	\$196.7	\$552.9	\$755.3	\$193.8	\$17.2
Net Income (\$ mill.)	\$21.0	\$39,8	\$111.5	\$18.6	\$1,9
Net Plant in Service (\$ mill.)	\$358.9	\$1,155.4	\$1,993.2	\$375.4	\$31.9
Book Common Equity (\$ mill.)	\$162,8	\$303.3	\$812.8	\$142.0	\$13.9
NH Nuclear Commitment	1235	679	1258	540	34
Nuclear Cost Commitment (\$ mill.)	\$1,055.9	\$823.6	\$1,008.8	\$478.9	\$29.4
RATIO OF INDICATORS TO NUCLEAR CO	JMMITMENT				
Peak Load	0.9	2.9	3.0	1.6	3.1
Sales	4.0	17.3	15.0	8.33	14°4
Revenues	15.9%	81.5%	60.1%	35.9%	51.1%
Net Income	1.70%	5.86%	8.877	3.44%	5.311
Net Plant in Service	0.29	1.70	1.59	0.59	0,95
Common Equity	0.13	0.45	0.65	0.26	0.41
RATIO OF INDICATORS TO NUCLEAR CO	ST CONNITHENT				
Revenues	18.6%	67.1%	74.9%	40.5%	58.4%
Net Income	1.99%	4.83%	11.05%	3.892	6.062
Net Plant in Service	0.34	1.40	1.98	0.78	1.07
Common Equity	0.15	0.37	0.81	0.30	0.47

# TABLE 8.3: COMPARISON OF FINANCIAL INDICATORS TO NUCLEAR COMMITMENT

-

## INDICATOR for 1978

ţ

			UTILITY			
	PSNH 	BECo	NORTHEAST	UI 	CNP High-Risk	HPS 
Peak Load (NN)	1,145	2,031	3,871	953	1173	104
5ales (6WH)	5,384	12,589	17,964	4,712	5,844	534
Revenues (\$ mill.)	\$260.8	\$613.0	841.4	\$216.3	\$208.2	\$19.9
Net Income (\$ aill.)	\$36.5	\$33.9	\$108.3	\$21.5	\$29.6	\$2.8
Net Plant in Service (\$ mill.)	\$719.7	\$1,137.5	\$2,011.8	\$371.2	\$513.2	\$44,1
Book Common Equity (\$ mill.)	\$228.3	\$355.0	\$866.1	\$177.6	\$196.3	\$17.1
NW Nuclear Commitment	1235	679	1023	540	342	1
Nuclear Cost Coamitment (\$ mill.)	\$770.3	\$713.9	\$1,455.9	\$373.7	\$241.8	\$19.0
RATIO OF INDICATORS TO NUCLEAR CO	MNITHENT					
Peak Load	0.9	3.0	3.8	1.8	3.4	3.1
Sales	4.4	18.6	19.5	8.7	17.1	15.9
Revenues	21.1%	90,3%	82.2%	40.02	61.02	59.2%
Net Income	2,962	4.99%	10.59%	3.98%	8.67%	8.48%
Net Plant in Service	0.58	1.58	1.97	0.69	1,50	1.31
Common Equity	0.18	0.52	0,85	0.33	0.57	0.51
RATIO OF INDICATORS TO NUCLEAR COS	IT COMMITMENT					
Revenues	33.9%	85.9%	57.8%	57.9%	86.1%	104.6%
Net Income	4.74%	4.75%	7.44%	5.75%	12.25%	14,997
Net Plant in Service	0.93	1.59	1.38	0.99	2.12	2.32
Comeon Equity	0.30	0.50	0.59	0.48	0.81	0.90

### TABLE 8.4: COMPARISON OF FINANCIAL INDICATORS TO NUCLEAR CONNITMENT

INDICATOR for 1980

r,

			UTILITY			
-	· PSNH	BECo	NORTHEAST	UI 	CMP High-Risk	NPS
Peak Load (N¥)	1,117	2,100	4,015	971	1193	105
Sales (GWH)	5,642	12,802	20,562	4,715	\$6,038.5	539
Revenues (\$ mill.)	\$351.2	\$886.4	\$1,324.5	364.1	\$335.3	\$27.8
Net Income (\$ mill.)	\$57.9	\$51,7	\$114.2	34.5	\$26.4	\$2.5
Net Plant in Service (\$ mill.)	\$386.7	\$1,200.4	\$2,140.8	\$359.8	\$625.8	\$35.8
Book Common Equity (\$ mill.)	\$387,8	\$431.9	\$918.0	\$223	\$208.7	\$18.9
MW Nuclear Commitment	895	679	841	483	342	34
Nuclear Cost Commitment (\$ mill.)	\$1,322.4	\$2,073.9	\$1,816.7	\$757.7	\$545.0	\$45.6
RATIO OF INDICATORS TO NUCLEAR C	DMNITHENT					
Peak Load	1.2	3.1	4,8	2.0	3.5	3.1
Sales	6.3	18.9	24.5	9.8	17.7	16.1
Revenues	39.2%	130.5%	157.5%	75.4%	98.2%	82.8%
Net Income	6.69%	7.61%	13.58%	7.15%	7.74%	7.41%
Net Plant in Service	0.43	1.77	2.55	0,75	1.83	1.06
Common Equity	0.43	0.64	1.09	0.46	0.61	0.56
RATIO OF INDICATORS TO NUCLEAR CO	IST COMMITMENT					
Revenues	26.61	42.7%	72.91	48.1%	61.5%	61.0%
Net Income	4.53%	2,492	6.29%	4.55%	4,852	5.46%
Net Plant in Service	0.29	0.58	1.18	0.47	1.15	0.79
Common Equity	0.29	0.21	0.51	0.27	0.38	0.42

# TABLE 8.5: COMPARISON OF FINANCIAL INDICATORS TO NUCLEAR COMMITMENT

## INDICATOR for 1982

NA - 200 - 21

		UTILITY			
	PSNH 	NORTHEAST	UI 	CMP High-Risk	NPS
Peak Load (N¥)	1,176	4,003	952	1,259	118
Sales (GHH)	5,587	19,591	4,475	6,585.6	558
Revenues (\$ mill.)	\$423.3	\$1,770.0	\$436.7	\$401.3	\$31.1
Net Income (\$ mill.)	\$92.0	\$175.0	\$65.8	\$41.0	\$4.7
Net Plant in Service (\$ mill.)	\$404.8	\$2,249.7	\$362.1	\$545.0	\$35.8
Book Common Equity (\$ mill,)	\$538.0	\$1,145,1	\$319.8	\$269.4	\$24.9
NN Nuclear Commitment	851	837	445	342	34
Nuclear Cost Commitment (\$ pill.)	\$1,967.8	\$2,503.9	\$1,049.6	\$149.0	\$76.6
RATIO OF INDICATORS TO NUCLEAR COM	YITHENT				
Peak Load	1.4	4.8	2.1	3.7	3,5
Sales	6.ċ	23.4	10.1	19.3	16.8
Revenues	49,7%	211.4%	98.12	117.5%	92.7%
Net Income	10.81%	20,90%	14.78%	11.99%	13.88%
Net Plant in Service	0.48	2.69	0.72	0.79	1.07
Common Equity	0.63	1.37	1.0	1.0	0.74
RATIO OF INDICATORS TO NUCLEAR COST	COMMITHENT				
Revenues	21.5%	70.7%	41.6%	269.42	40.6%
Net Income	4.68%	6.99%	6.271	27.49%	6.08%
Net Plant in Service	0.21	0.90	0.35	3.66	0.47
Common Equity	0.27	0.46	0.30	1.81	0.33

### TABLE 9.1: MPS FORECAST HISTORY

Year	n4	Prniertion
1231	UT.	rrurectum

-											
orecast	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
1770										 F.,-	~~~~
1978											
1971											
1972											
1973	88.5										
1974	94.4	87.1									
1975	100.5	92.9	92.9								
1976	107.2	99.4	99.4	99.4							
1977	114.3	106.8	103.8	103.8	105.9						
1978	121.9	114.6	110.4	110.4	111.9	105.0				-	
1979	129.9	122.1	117.4	117.4	118.3	109.2	105.8				
1980	138.5	130.0	124.8	124.8	125.1	114.4	109.8	105.7			
1981	147.6	138.4	132.7	132.7	132.2	119.5	114.1	113.7	113.7		
1982	157.3	147.4	141.0	141.0	139.7	125.0	118.2	119.8	119.8	117.0	
1983	167.7	157.0	149.9	149.9	147.7	130.7	122.9	122.0	122.0	120,0	114.0
1984	178.8	167.2	159.3	159.3	156.1	136.7	127.7	124.3	124.3	122.0	115.0
1985	190.6	178.1	169.4	169.4	165.0	143.1	132.3	134.1	134.1	129.0	116.0
1986	203.1	189.7	180.0	180.0	174.4	149.5	137.3	136.5	136.5	130.0	117.0
1987	216.5	202.0	191.3	191.3	184.4	156.5	142.3	139.0	139.0	137.0	118.0
1988		215.1	203.4	203.4	194.9	163.7	147.3	141.4	141.4	141.0	120.0
1989			216.2	216.2	206.0	171.3	152.9	144.0	144.0	144.0	121.0
1990				229.8	217.7	179,1	158.4	146.5	146.5	150.0	122.0
1991					230.1	187.3	164.4	149.2	149.2	152.0	123.0
1992						196.0	170.3	151.9	151.9	154.0	124.0
1993							176.5	154.6	154.6	156.0	125.0
1994								157.4	157.4	158.0	127.0
1995									160.2	160.0	128.0
1995										163.0	128.0
1997										166.0	129.0
1998										169.0	130.0
1999										172.0	131.0
2000										175 0	132 0

Sources: State of Maine Docket #84-80 Maine Public Service Company Exhibits Fred Bustard, Exhibit FCB-1, Sheet 2 of 2 Notes: 1. 126 MW projection for 1983 assumed to be a typo.

.

# TABLE 9.2: BHE FORECAST HISTORY

	Date of Projection												
	Jun-71	Aug-73	Aug-74	Aug-75	Dec-76	Jan-78	Dec -78	Nar - 80	Jun-81	Jul-82	Aug-83		
rorecast for:	 [1]					*****							
1971	144												
1977	154												
1973	169												
1974	182	174											
1975	198	187	168										
1976	215	193	182	185									
1977	234	205	190	194	197								
1978	255	218	205	707	211	208							
1979	276	231	220	220	224	224	252						
1980	301	245	237	232	237	233	273	229					
1981	328	260	251	246	244	243	284	237	231				
1982		276	267	260	258	252	296	245	235	235			
1983		293	285	275	273	264	309	254	241	237	229		
1984		310	304	291	289	276	- 319	263	248	244	235		
1985				308	306	289	333	272	254	252	245		
1986					323	302	352	280	260	261	252		
1987					342	315	367	288	265	264	257		
1988						330	381	297	270	268	261		
1989						345	397	306	276	272	267		
1990						360	413	315	281	275	272		
1991							430	324	286	278	275		
1992								331	291	282	280		
1993								338	296	287	283		
1994								346	301	291	287		
1995								353	306	294	292		
1996									311	298	295		
1997									316	302	300		
1998									321	307	303		
1999									326	312	307		
2000									331		313		
2001									336		318		
2002											323		

Sources: State of Maine Docket 484-113 BHE response to 29 STAFF 1.

Notes: 1. Month not given, June assumed.

N=+= = ( D=

### TABLE 9.3: CMP FORECAST HISTORY

n - La califacta (Channel) La califacta (Channel)

-	Date of Projection										Actual Winter	
	Oct-74	Jan-75	Jan-76	Jan-77	Nov-77	Jan-78	0ct-78	May-80	May-81	Apr -82	May-83	Peal
26356	[2]	{2}	[1]	[1]	{2}	[1]	{2}	[2]	[6]	[5]	[6]	
960												40
961												444
962												46
963												48
964												51
965												54:
966												55
767												606
968												64
769						•						674
970												75
171												79(
172												86
173							•					844
1/4	911											92
113	1034	472	1405									104
118	1118	1031	1023									108
111	1203	1103	1040	1111	1017	1142	1170					1124
מוז מרו	1273	1183	1100	1173	1213	1188	11/3	1011				1177
777 200	1300	3207	1241	1203	1280	1280	1233	1744				1207
79V 191	1407	1301	1327	1330	1331	1331	1344	1230	1721	1970		1201
701 097	1373	1433	1420	1407	1721	17111	1400	1327 1700	1241 1767	1230		1107
702 193	1710	1303	1320	1902	1972	1472	1430	1307	1202	1277	1927	1700
294	1927	1900	1741	1242	1200	1200	1313	1107	1700	1330	1703	1107
995	1/4/	1000	1952	1072	1775	1077	1277	1773	1310	1201	1301	
194		1101	1978	1911	1903	1913	1641	1551	1370	1397	1312	
87			1,4,	1999	1995	1995	1711	1415	1001	1407	1378	
188					1969	1969	1794	1664	1410	1474	1411	
89					1,2,	1,0,	1852	1701	1436	1436	1440	
90		•					1907	1745	1463	1452	1471	
91							1964	1788	1491	1473	1499	
92							2018	1842	1520	1487	1522	
93							2073	1886	1549	1504	1545	
94								1961	1579	1525	1569	
95									1610	1543	1595	
96											1620	
97											1646	
98											1671	
99											1701	
00											1729	

Notes: 1. NEPLAN Load and Capacity Reports

2. CMP Load Forecasts.

3. CMP 1983 Annual Report.

4. Staff Data Request C-4, Ques. 217, Docket #82-266 MPUC.

5. CMP Fall 1981 Long Range Forecast, April, 1982

6. Quimby Testimony, Maine Docket #84-120

Exh.A, CMP May 1983 Long-Range Load Forecast, p.3, Tab. 2.





Year Forecast Issued

١











## APPENDIX B

### COST AND SCHEDULE ESTIMATE HISTORIES

۰.

I. Completed Plants

II. Incomplete Bechtel Plants

III. Incomplete Non-Bechtel Plants

IV. Canceled Bechtel Plants

V. Canceled Non-Bechtel Plants

ANALYSIS AND INFERENCE, INC. SRESEARCH AND CONSULTING

10 POST OFFICE SQUARE, SUITE 970 - BOSTON, MASSACHUSETTS 02109 - (617)542-0611

-

			Estimates				
	Act	uals				Est.	
11.1.N			Date of	Total	000	Years	<u>7</u> Caralista
Unit Name	LOST	CU9	25114819	LOST			
Nine Mile Point	162	Dec-67	Mar-64	68	Nov-68	4.67	0.0
Nine Mile Point	162	Dec-69	Sep-64	68	Jul-68	3.83	0.0
Nine Xile Point	162	Dec-69	Jun-66	88	Nov-68	2.42	34.0
Nine Mile Point	162	Dec-69	Dec-67	134	Jan-69	1.09	75.0
Nine Mile Point	162	Dec-69	Jun-68	134	Jun-69	1.00	88.0
Nine Mile Point	162	Dec-69	Dec-68	134	Dec-69	1.00	94.0
Byster Creek 1	90	Dec-69	Jun-64		Oct-67	3.33	0.0
Oyster Creek 1	90	Dec-69	Sep-65		Nov-67	2.17	18.0
Øyster Creek 1	90	Dec-67	Nar-66		Dec-67	1.75	30.0
Byster Creek 1	90	Dec-69	Jun-66		Dec-67	1.50	33.0
Oyster Creek 1	90	Dec-69	Sep-66		Jan-68	1.33	41.0
Uyster Creek 1	90	Dec-69	flar-6/		Apr-68	1.09	55.4
Dresden 2	83	Jul-70	ñar∽óó		Feb-69	2.92	6.0
Dresden 2	83	Ju1-70	Sep-67		Apr-69	1.58	59.0
Oresden 2	83	Jul-70	Dec - 68		Jan-/0	1.08	84.0
Sinna	83	Jul-70	Dec-65		Jun-69	5.50	0.0
61nna	83	Jul-70	fiar tóó		Jun-67	3.23	0.0
Ginna	83	Jul-/0	Sep-68		Uct-64	1.08	80.0
Point Seach I	/4	9ec-/0	Jun-66		Apr-/0	3.83	0.0
Point Beach 1	/4	Dec-/0	Sep-66		Apr-/0	3.38	9.0 57.0
Point Beach 1	/4	9ec-/0	N87-67		Aug-/0	1.42	33.2
Point Beach 1	/4	Vec-/V	Dec-64		9ec-/0	1.00	/1.8
Milistone l	47	fiar-/1	Dec-60		Hug-67	3.8/	V.V 21.7
Milistone i	47	fiar -/1	fiar-6/		Aug-69	2.42	21./ 75.0
Allistone 1	97 07	Mar-/1 Non 71	380-67 Dec 10		80g-69	1.72	33.U 70.1
MillsCone i	<i>וד</i> דח	Nar-/1 Na71	990-08 Mam-LD		939770 ¥ar-70	1.00	74.1
Millstone 1	וד	Naf=/1 Mag.71	645-67 645-60		nar -70 8et-70	1.00	75.3
niliscone i Religner 2	וד חד	nar=/1 ¥==-71	sep-or		UCC~70 X~x=70	1.00	00.0
Modinson 1 Mosticollo	10	nar - 71 Jun - 71	Jun-11		847-70 Nay-70	7.97	· 0.0
Deceden 3	103	Nov-71	00-1196 Har-66		5ch-70 -	3.72	0.0 7 A
Breeden 3	104	Nev-71	Ner-48		1 eo 70 Cun-70	1 44	51.ú
Dreeden 3	104	Nov-71	802 00 Xor-69		10g 70 10n-78	1 17	57.0
Dresden 3 Dresden 3	104	Nov-71	Jun-20		Ner-78	1.50	56.0
Drosdon 3	104	Hov-71	Mar-70		Jun-71	1.25	80.0
Palisades	147	Dec -71	Bar-68	89	Nav-70	2.17	31.0
Pálisades	147	Der-71	Har -69	110	Aug-70	1,42	70.0
Point Beach ?	71	8ct-72	Mar - 67		Apr-71	4.08	0.0
Pnint Beach 2	71	8ct-72	Seo-69		Aug-71	1,91	25.4
Point Beach 2	71	0ct-72	Dec-69		Dec-71	2.00	29.7
Point Beach 2	71	Oct-72	Har -70		Aug-71	1.42	35.2
Point Beach 2	71	0ct-72	Sep-70		Sep-71	1.00	56.1
Yermont Yankee	172	Nov-72	Sep-66	88	Oct-70	4.08	0
Vermont Yankee	172	Nov-72	Sep-69	120	Jul-71	1.83	
Versont Yankee	172	Nov-72	Mar-70	133	Jul-71	1.33	
Vermont Yankee	172	Nov-72	Ju1-71	154	Mar-72	0.57	
Maine Yankee	219	Dec-72	Sep-67	100	Hay-72	4.67	
Maine Yankee	219	Dec-72	Sep-68	131	Hay-72	3.66	
Maine Yankee	219	Dec-72	Mar -70	181	Hay-72	2.17	
Pilgria 1	231	Dec-72	Jul-65	70	Jul-71	6.00	

				Esti				
	Act	uals	<b>.</b>			Est.	v	
			Date of	lotal	605	Years		
Unit Name	Cost	093	ESCIDATE	LOST		το του	Comptete	
Piloria I	231	Dec-72	Feb-67	105	Jul -71	4.41		
Piloria I	231	Dec-72	Jun-68	122	Sep-71	3.25		
Pilorim 1	• 231	Dec-72	Jan-70	153	Sep-71	1.66		
Surry 1	247	Dec-72	Dec-66	130	Mar-71	4.25	0.1	
Surry 1	247	Dec-72	Dec-67	144	Mar-71	3.25	4.3	
Surry 1	247	Dec-72	Dec-68	165	Nar -71	2.25	15.2	
Surry 1	247	Dec-72	Jun-69	165	Apr-71	1.83	33.7	
Surry 1	247	Dec-72	Sep-69	165	Jun-71	1.75	45.7	
Surry I	247	Dec-72	Dec-59	187	Jun-71	1.50	45.6	
Surry 1	247	Bec-72	Jun-70	189	Oct-71	1.33	79.5	
Surry 1	247	Dec -72	Sec - 70	189	Feb-72	1.17	88.5	
Turkey Print 3	109	Bec-77	Seo-57	99	Jun-71	1.75	52.2	
Turkey Point 3	109	Dec -77	Mar - 70	111	Jun-71	1.25	66.7	
Bush Fitime 1	100	Eph-73	Jun-44	•••	Bar-70	3.75	0.0	
Buad Citine 1	100	Feb-73	Sen-47		Nar-70	2.50	26.0	
Busd Citize 1	100	Fab-73	Ner-49		0rt-70	1.83	37.0	
Quad Cities 1	100	Feb 73	Jun-49		Jan-71	1.59	64.0	
Buad Citize 1	100	Feb-73	Hor-70		313-73	1.33	75.0	
Bund Citize t	100	Eab-73	Jun-70		361-71	1.08	82.0	
Buad Cities 1	100	1 eu 73 Nar-73	Sen-44		Har-71	4.50	0.0	
Burd Cities 7	100	Mar 73	Gen-17		Mar - 71	7.50	. 16.0	
Buad Citize 7	100	11af -73 Mor -73	Der-49		Apr-71	2 33	38.0	
Burd Citize 7	100	3161 73 Xar - 73	Jun-49		J-77	2,58	47.0	
Buad Cities 1	100	1141 73 Mar 73	Nor-70		Xov-77	2 17	56.0	
Quad Citizs 2	100	Mar-73	Mar -71		мар 71 Жау-77	1.17	82.0	
Correy 7	100	na 73 ¥av-73	Der-55	109	Nay 72 Nor-77	5, 75,	0.0	
Burry 2	130	Nay-13 Nay-73	Ner-47	100	Har -77	1 25	1.4	
Surry 2	130	nay-73 May-73	Dec-40	111	Nation 12 Not-72	7 75	6.3	
Surry 2 Curry 7	130	пау-73 Жам-77	Der-29	173	Hai 71 Har-72	7 25	70.8	
Surry 2 Surry 7	130	1127-70 Hau-77	Nor-70	100	101 72 00r-77	2.20	25.8	
Curry L	130	1147-73 Max-73	Gen-70	130	יין איז אבע ב-72	1 44	37.4	
Surry 1 Surry 7	130	1147-73 May-73	320-70 Har-71	130	nay 72 Art-77	1.59	48.8	
Curry 2	150	Hay 13 May 73	Jun -71	170	8rt-77	1.74		
Surry 2 Surry 7	150	May 73 May 73	San-71	141	N=r-77	1.25	76.2	
Surry 2 Surry 2	150	307 73 Xov-73	Ner-71	145	Nor-73	1.25	83.3	
Curry 2	150	1127 70 May=73	Nar-77	147	Har - 73	1.20	88.0	
	150	3n1-73	Gen-44	78	Hav 70	4.66	0.0	
Oconee i	156	3.1-73	Der-66	75	Hav-71	4.41	0.0	
Oconee I Oconee I	130	101 73	Jun-47	, U 95	May 71	3 92	0.0	
Oconee 1 Oconee 1	120	Jul -73	Sen-47	94	//μα //////////////////////////////////	3.34	1.0	
Oconee i	154	3n1-73	Gen-L9	109	Hav-71	1.66	24.5	
Indian Soint 2	204	6un 73	Jun-44	107	Jun-49	3.00	7.0	
Indian Fuint 7	200	Aug 73	Sen-48		6nr-70	1.58	56.0	
Indian Fullit 2 Indian Doint 2	700 704	nug=73 ∆xn=73	Har-10		עי וקה אבע~70	1,17	66.0	
indian Fuint 1 Indian Daiat 7	100 101	nuy-/3 Aun-77	Jun-LO		Nrt-70	1 77	71_0	
Indian Point 2	200 201	nug-13 Aug-77	Nor-LO		350-71	1.03	87.0	
INUIAN FUIRL / Indian Oniai 7	240 201	73 dun=77	Net-07 Ner-70		Ner-71	1,00	98_0	
inuida Fuint 2 Cort Colhous 1	174	Gon-77	Sen-47	70	Nav-71	3.66	0.0	
Fort Calhoun 1	178	Gen-77	נט קשט גע-תסף.	, v 97	Hav-71	2.55	17.0	
FULL CALHOUN I	174	Gen-77	Uc qol Mar-49	97	Hay-77	3.17	21.0	
, u) t baindun i	211		1141 WZ					

				Est	imates		
	Act	uals				Est.	
			Date of	Total		Years	y y
Unit Name	Cost	COD	Estimate	Cost	000	te COD	Complete
Fort Calhoun 1	174	Sep-73	Jun-69	92	May-71	1.91	25.0
Fort Calhoun 1	174	Sep-73	Sep-69	92	Sep-71	2.00	30.0
Fort Calhoun 1	174	Sep-73	Mar-70	125	Jun-72	2.25	47.0
Fort Calhoun 1	174	Seo-73	Dec-70	125	Nov-72	1.92	75.0
Fort Calhoun 1	174	Sep-73	Sep-71	125	May-73	1.66	89.0
Fort Calhoun 1	174	Sep-73	Dec-71	159	Hay-73	1.42	85.7
Turkey Point 4	123	Sep-73	Sep-69	41	Jun-72	2.75	52.2
Turkey Point 4	123	Sep-73	Har-70	80	Jun-72	2.25	66.7
Turkey Point 4	123	Seo~73	Bec~70	81	Jun-72	1.50	65.4
Turkey Point 4	123	Sep-73	Nar-71	83	Jun-72	1.25	68.0
Turkey Point 4	123	Seo-73	Jun-71	96	Jun-72	1.00	72.0
Turkey Point 4	123	Sep-73	Dec-71	126	Dec-72	1.00	34.0
Prairie Isl 1	233	Dec-73	Har-67	100	Hay-72	5.17	0.0
Prairie Isl 1	233	Dec-73	Dec-67	105	Nav-72	4.42	0.5
Prairie Isl 1	233	Dec-73	Sep-70	148	8ct-72	2.08	37.0
Prairie Isl 1	233	Dec-73	Sep-71	148	Dec-72	1.25	74.0
Prairie Isl 1	233	Dec-73	0ec-71	190	0ec-72	1.00	80.0
Prairie Isl 1	233	Dec-73	Seo-72	210	Oct-73	1.08	92.0
Zion 1	276	Dec-73	Mar-67	164	Apr-72	5.09	0
lion 1	275	Dec-73	Nar-69	205	Apr-72	3.09	12
7inn 1	276	Dec-73	Jun-70	232	Apr -72	1.83	43
Zion 1	276	Dec-73	0ec-70	232	Nav-72	1.42	57
7ion 1	276	Dec-73	Jun-71	232	Aug-72	1,17	75
Kewaunee	202	Jun-74	Dec-67	85	Jun-72	4.50	0.0
Хемацпее	202	<b>Jun-74</b>	Mar - 69	109	Jun-72	3,25	3.5
Kewaunee	202	Jun-74	Nar - 70	121	Jun-72	2.25	13.5
Кензилее	202	Jun-74	Jun-70	123	Jun-72	2.00	20.0
Kewaunee	202	Jun-74	Sep-70	123	Sep-72	2.00	28.0
Кенацпее	202	Jun-74	Sep-71	134	Bec-72	1.25	72.0
Kewaunee	202	Jun-74	Mar-72	134	Har-73	1.00	87.0
Кенациее	202	Jun-74	Jun-72	158	Jun-73	1.00	91.0
Kewaunee	202	Jun-74	Sep-72	163	Seo-73	1.00	95.0
Cooper	246	Jul-74	Seo-67	133	Aor-72	4.58	. 0.0
Cooper	246	Jul-74	ňar -68	127	Apr-72	4.08	0.9
Cooper	246	Jul-74	Dec-70	207	Åpr-73	2.33	42.0
Cooper	246	Jul-74	Jun-72	207	Jul-73	1.08	81.1
Peach Bottom 2	522	Jul -74	Dec-66	138	Har-71	4.25	0.0
Peach Bottom 2	522	Jul-74	Sep-67	163	Mar-71	3.50	1.0
Peach Bottom 2	522	Jul -74	Mar - 68	163	Mar-71	3.00	4.4
Peach Bottom 2	522	Jul-74	Sep-69	206	Mar-72	2,50	35.0
Peach Bottom 2	522	Jul-74	Dec-69	218	Mar-72	2.25	43.0
Peach Bottom 2	522	Jul-74	ăar−70	230	Nay-72	2,17	48.0
Peach Bottom 2	522	Jul-74	0ec-70	230	Dec-72	2.00	70.0
Peach Bottom 2	522	Jul-74	Mar-71	277	Mar-73	2,00	77.0
Peach Bottom 2	522	Jul-74	Jun-71	288	Mar-73	1.75	80.0
Peach Bottom 2	522	Jul-74	Jun-72	352	Sep-73	1.25	72.0
Browns Ferry 1	256	Aug-74	Sep-66	117	Aug-70	3.92	0.0
Browns Ferry 1	256	Aug-74	Dec-66	117	Oct-70	3.83	1.0
Browns Ferry 1	256	Aug-74	Sep-67	124	0ct-70	3.08	8.0
Browns Ferry 1	256	Aug-74	Sep-69	149	Oct-71	2.08	31.0

	•			Estimates					
	Act	uals			~~~~~	Est.			
			Date of	Total		Years	ž		
Unit Nage	Cost	COD	Estiaate	Cost	COD	te COD	Complete		
					*****				
Reaver Creek t	951	Au = _ 7 A	Tu= -70	140	Acr - 77	( 97	A.2. 6		
Drumis rerry 1 Decumer Formul	238	809-74 Aug-78	801-70 Mar-71	197	Hps -72 Max=77	1.03	70.0 57 A		
Bruans Ferry 1	130 751	Aug-74	nar -/1 Con_71	105	N=+-77	1.17	13.V 17 A		
Drumis rerry i	140 140	HUY-74 Can-73	360-11 Com-11	103	UL(-72 Mag_77	1.VO 5 LL	32.0		
Oconee 1 Deconee 1	100	220-74 Con-74	384-30 Jun-17	13 01	Nay-/1 Max-77	1.00	0.0		
Oconee 2	10V 170	Sep=74	046-07 Dec -47	99 00	844-77 844-77	1.12	0.0		
Oconee 2	100	3897/4 Car 74	UEL-07 Wiw.40	00 07	nay-/2 Mag_77	7.12	0.0		
Oconee 1 Reese 2	160	264-74 Con -74	1121 -07 Car _60	100	8847772 May=70	3+13 7 LL	17.7 78 5		
Uconee 2	100	3ep-/4	3ep-07	107	1.1-70	1.07	14,J 50 0		
UCONSE 2	100	32p-74	360-7V	107	001-72 D 77	1.03	JU.U LD ()		
UCONEE Z	160	388-/4 0 71	nar-/1	107	DeC-72	1.13	dd. U 71 A		
UCORPE 2	150	3ep-74 C 71	Sep-/1	137	reu-73 M-11 71	1171	71.0		
10788 8118 1, 1 These Wile 7, 1	378	32p-/4 Car 74	nar-6/ 2	100	nay-/: Nav-71	1.1/ 7.00	U A		
Infee mile 1. 1	378	366-74	JUR-5/ Dec /7	100	May 71	3.71 7.41	0		
INTER 7118 1. 1	378	3ep-/4	DEC-5/	124	nay-/1 0 71	3,43	i		
Inree Mile 1. 1	378	588-/A	UEC -68	130	Sep-/1	2./3	7		
	378	566-14 D 21	JUN-57	102	588-71 ¥ 77	2.23	10		
Inree mile 1. 1	378	560-74 C 71	388-57 D /0	102	May-12 New 77	2.00	20 7/ F		
INTEE MILE 1. 1	348	58p-/4	Vec-67	190	nay-72 Nav. 70	2.91	18.3 77 F		
inree mile 1. 1	378	580-/4	nar-/V	184	1.1.70	2.13	ີ. ເ		
inree mile 1. 1	348	32p-/4	JUN-/V	184	0-1 70	2.08	51 51 51		
inree mile 1. 1	-378	38p-/4	3ep-70	177	0CT-/2	2.08	34.3 En E		
Inree mile 1. 1	348	360-/4	0ec-/0 N 71	282	0CT-72 New 70	1.83	37.3		
three file 1. 1	378	360-/4	Mar - / 1	201	NOV-72	1.0/	67.3		
inree mile 1. 1	378	5ep-/4	5ep-/1	178	Nov-73	1.17	8/ 0/		
three Mile 1. 1	248	Sep-/4	JUN-/2	328	NDY-75	1.72	00 00		
ihree file i. i	398	Sep-/4	Sep-72	303 777	May-/4	1.50	70		
ihree file i. l	348	Sep-/4	ner-/3	3/3	JU1-/4	1.55	71		
ihree file 1. 1	378	Sep-/4	JUN-/3	343	HUQ-/4	1.17	73		
210N 2	290	Sep-/4	JUD-5/	103	лау-/3 Нац. 77	3.72	V,		
2100 2	290	388-/A	737-67 1 70	174	Nay-73	7+17	7/		
110N 2	290	388-/4	งนก-/บ	213	May-73	2.72	30 71		
110N 2	290	38p-/4	nar-/2	203	nay-/3 n 70	1.1/	11		
Arxansas 1	233	DEC-/A	Dec-6/	132	0ec-72	3.00	0		
Hrkansas I	233	UPC -/4	nar-69	108	Dec-72	3./3	1.0		
Arkansas 1	200	08C-/4	JUN-07	132	DEC-72	3.30	1.0		
Arkansas I	200	Vec-/4	flar -/2	1/3	520-73 0-4 77	1.30	/6.V D/ 0		
Hrkansas I	200	Dec~/4	Sep-72	185	UCT-73 Mar 74	1.08	00.0 0/ 7		
Hryansas 1	200	DEC-/4	nar-/3	200	nar-/4	1.00	75.3		
uconee s	150	DEC-/4	JUD-6/	72	328-73	5.00	0.0 1 A		
Uconee S	160	Dec-/4	Dec-67	73	Jun-73	3.30	2.0		
Uconee s	150	Dec-/4	Jun-68	38 07	3UR-73	3.00	1.1		
uconee s	100	Dec-/4	nar-67	73	Jun 73	4.23 7 75	1/./ Da =		
uconee J	100	98C~/4 Na- 7/	380-07 C 70	107	JUIT / 3	3./⊒ 1.07	17.J Dr A		
uconee s	100	Dec~/4 Den 71	5ep-/V	107	JU1-/J N-0 77	2.83	11.V 47 A		
ncouse ?	150	VEC~/4	380-/1 He- 77	13/	NUY-/3	4,17	43.V D7 F		
UCOREE 3	190	Dec~/4	nar-/3	137	JUN™/A 177	1.23	5.15 M		
reach pottom 3	220	Vec~/4 Ber 74	96C-00 Car 17	123	020-77 138-77	5.07 5.71	157 117		
reach dottom S Deach Dottom 7	770 770	38C~/4 Noo 73	365-91 Mar 10	143	Vall=73 Jan=77	301	ан 1 L		
Peach Ductom 3 Reach Rotter 7	120 220	Dec-74 Nor-74	nar -od Con-Lo	14년 13년	van-73 Nor-73	7.04 1 50	1.0 <u>1</u> 5		
183CH DUCCUM J	110	12EL 7/4	368_00	711	មាចា វីថ	√ن د ⊺	7.4		
Z E Sola

----

				Esti	aates		
	Act	uals				Est.	ų
			Date of	Total		Years	
Unit Name	Cost	CUD	Estimate	Cost	CUD	to CUV	LORDIELE
Pearh Antton 3	220	Nor-74	Sen-19	193	Nar-73	3.50	12.0
Peach Rottom 3	220	Ber-74	Der-49	203	Har-73	3.25	13.0
Peach Bottog 3	220	Bar-74	H=r-70	221	Nar -73	3.00	13.0
Peach Rottom 3	220	Nor-74	Dec-70	221	0rt-73	2.83	30.0
Peach Antton 3	770	Der-74	Nar-71	263	Apr -74	3.09	37.0
Poarb Anttom 3	220	Der-74	Jun-77	316	Sen-74	7.25	50.0
Peach Bottom 3	- 220	Der -74	Sen-73	314	Dec-74	1.25	91.0
Poach Antton 3	220	Nor-71	8er-73	284	Dec-74	1.00	94.0
Proirie Iel 7	177	Nec -74	Dec -67	80	Nav-74	6.41	0.5
Proirie Jel 7	172	Nor-74	Sen-70	112	Nay-74	3.66	5.0
Projrie let 7	172	Dec-74	8er-71	145	Hay-74	2.41	20.0
Prairie Isl 7	172	Ner-74	Sen-77	140	Bet-74	2,08	35.0
Duane Arnold	202	Feb-75	Jun-68	103	Dec-73	5,50	0.0
Duane Arnold	202	Feb-75	Dec-48	107	Dec -73	5.00	0.0
Duane Arnold	202	Feb-75	Jun-69	133	Dec -73	4,50	0.0
Buane Arnold	202	Feb-75	Dec-69	138	Dec-73	4.00	0.0
Duane Arnold	202	Feb-75	Bec-70	148	Dec-73	3.00	10.0
Duane Arnold	202	Feb-75	Nar-72	177	Dec-73	1.75	50.0
Duane Arnold	202	Feb-75	Sen-77	197	Jan-74	1.33	69.0
Browns Ferry 7	254	Har-75	Sen-àà	117	8ct-70	4.08	1.0
Browns Forry 2	255	Har -75	8ar-47	117	Feb-70	2.92	3.0
Browne Ferry 7	255 254	Nar - 75	Sen-67	124	Feb-70	2.42	8.0
Browne Ferry 2	256	Nar -75	Har-68	124	0ct-70	2,58	12.0
Browns Ferry 2	256	Har - 75	Sen-69	149	0ct-71	2.08	31.0
Browns Ferry 2	256	Har -75	Jun-70	149	Apr -72	1.83	43.0
Browns Ferry 2	256	Nar-75	Sec-70	149	Jan-73	2.34	NA
Browns Ferry 2	256	Mar-75	Har-71	149	Apr-73	2.09	
Browns Ferry 2	256	Nar-75	Sep-71	149	Jul-73	1.83	
Browns Ferry 2	256	Nar-75	Jun-72	149	Jan-74	1.59	
Browns Ferry 2	256	Mar-75	Mar-73	149	Jul-74	1.33	
Rancho Seco	344	Apr-75	Dec-67	134	Hay-73	5.42	0.0
Rancho Seco	344	Aor-75	Jun-71	215	May-73	1.92	43.0
Rancho Seco	344	Åor-75	Har-72	215	0ct-73	1.59	65.0
Rancho Seco	344	Apr-75	Jun-72	264	Oct-73	1.33	75.0
Rancho Seco	344	Apr-75	Sep-72	300	Feb-74	1.42	78.0
Rancho Seco	344	Apr-75	Nar-73	327	Jun-74	1.25	80.5
Rancho Seco	344	Apr -75	Sep-73	328	Oct-74	1.08	92.0
Calvert Cliffs 1	429	Hav-75	Jun-67	118	Jan-73	5.59	0.0
Calvert Cliffs 1	429	May-75	Dec-67	123	Jan-73	5.09	0.0
Calvert Cliffs 1	429	Hav-75	Nar - 68	125	Jan-73	4.34	0.0
Calvert Cliffs 1	429	Hay-75	Mar - 69	124	Jan-73	3.84	3.0
Calvert Cliffs 1	429	May-75	Sep-70	170	Jan-73	2.34	24.0
Calvert Cliffs 1	429	May-75	Dec-71	210	Jun-73	1.50	58.0
Calvert Cliffs 1	429	May-75	Mar-72	210	0ct-73	1.59	63.0
Calvert Cliffs 1	429	Hay-75	Jun-72	250	8ct-73	1.33	70.0
Calvert Cliffs 1	429	Hay-75	Sep-72	250	Feb-74	1.42	72.0
Fitzpatrick	419	Jul -75	Nar-68	224	May-73	5.17	1.0
Fitzpatrick	419	Jul-75	Jun-72	301	Oct-73	1.33	71.0
Fitzpatrick	417	Jul-75	Jun-73	301	Jun-74	1.00	91.0
Cook 1	538	Aug-75	0ec-67	235	Apr-72	4.33	HA

÷

.

				Esti	aates		
	Act	uals				Est.	
			Date of	Total		Years	2
Unit Name	Cost	COD	Estigate	Cost	COD	to CDD	Complete
Parale 1	570	A	1	775	Son-77	7 75	1.0
Cook 1	330 570	HUG-75	0011-07 Con-70	770	369-12 Nor-77	2.50	19 0
	338 570	Aug-75 Aug-75	3ep=70	337 751	11a: -73 Nor-73	1.30	40.0
Cack I	330 570	HUG-75 Aug-75	9911-71 Con-71	000 751	0e+_73	2.73	14 A
Cook i	330 570	Huy-75 Aug-75	320-71 Jun-77	333	0-1-73	1 77	50 5
	338 570	809-73 80- 75	008-71 Bee-72	710	UL-73 Tun-74	1.55	58 A
Cook I	330 570	HUG-13 Aun-75	0ec-71 3un-73	111 177	041-74 Drt-74	1,30	70 5
	338 570	Aug-75 Aug-75	Bor-73	121	000-74 005-75	1,00	73.4
Cook i Deve eviet D	330 701	HUU-75 Nov-75	Dec-70	71) 105	ກນ: "ເວ ¥ລະ_73.	1.00	10.0
Brunswick 2	382 707	909-73 Nev-75	0ec-70 0ec-71	273	1121-7-7-1 Mar-74	3.13 7 75	10.0
Brunswick 2	302	804-13 Nov-75	Dec-71 Nec-77	210 751	nar - 14 Néc-73	7 06	78.0
Brunswick 2	301 707	NUY-73 Nev-75	965-71 Con-77	739	Dec 71	1 25	79 A
Branswick 2	302 701	Nov-75	3ep-73 8ec-73	307	Jon-75	1.09	89.0
Brunswick 2	301 700	Nov-75	UEL-73	120	Van 73	5 00	0 0
Naten i Naten i	370	022-73 Dec-75	840-20 Nor-19	100	300-73 300-73	3.00 k <u>4</u> .75	1.5
Haten i	370	Dec-73	Паг = 07 Мал = 70	131	000-73 100-73	7.23	5 ú
Naton I	37V 704	0ec-73 0ec-75	105-70	103	Jun-73	3.00	75
Haten i	370	Dec-73	Con-70	104	Ven-73	3.00	10.0
Mater 1	37V 700	021-73 Dee 75	580-70 Con-70	104	Nyr=ra Nov=78	1 40	6.7.0
Haten i	37V 700	Dec-73 Non-75	029-72 Doc-77	107	sids = 7.4 Apr = 7.4	1.7/ 1.77	49 N
Malen i	370	DEL-73 Dem 75	DEC-/1 Dec-17	161	Apr - 74	1,33	0.0
Milliscone 2	410 110	Dec-73 Dec-75	Bec-d/ Mag_20	130	прі / т Апт-74	5.55	0.0 0.0
Millstone 2	410 110	00r-75	nar-10 Nor-19	170	npr - 74 3.05 - 74	5 77	0.0
Millstone 2	410	0ec-75	Nec-10	177	0.05-73	1 77	0.0
Millscone 2 Millstern 7	410	0et-73 0ec-75	Dec-07	100	005-74	२ रर	10.0
Milletere 0	710	Ber-35	Con-71	137	דו ועה להר-71	2.58	24.0
Milliscone 2	410 110	0ec-75	Sep-71 Sep-71	232	Δρχ-74	1 58	49.0
Milleter 7	410 410	805-75	Maria Maria	7.81	Noc-74	1.00	50.0
Millstens 2	710 110	Det-73 Dec-75	Nor-73	341	950-75	1 41	69.0
Train	710	Dec 73 Ber-75	Dec 13 Dec-49	102	Gan-74	5, 75,	0.0
Trojan	732	Dec 75	82r-49	170	Sen-74	5.50	0.0
Trojan	450	Dec 70 Ber-75	Ner-49	277	San-74	4.75	0.0
Trojan	452	Dec 75	Nar-71	228	Gen - 74	3.50	3.6
Trojan	452	Dec 75 Der -75	Nar-77	233	San-74	2.50	30.0
Trnian	157	Ner -75	Sen-72	243	Sen-74	2.00	52.0
Trnisa	432	Ser-75	Ner-77	284	Jul -75	7.58	57.0
Trojan	452	Der -75	Sen-73	334	Jul -75	1.83	72.0
Trajan	457	Dec-75	Sen-74	366	Oct-75	1.08	84.0
Gt lucia l	470	Jun-75	Jun-49	123	Jun-73	4.00	1
Gt Lucie 1	470	Jun-76	Sen-69	123	May-73	3.66	1
St luris 1	176	Jun-74	Dec-70	200	Jun-74	3.50	9
St. Lucia 1	470	Jun-75	Jun-71	203	Jun-74	3.00	12
St. Lurie 1	470	Jun-75	Dec-71	218	Jun-74	2.50	17
St. Lurie 1	470	Jun-76	Mar-72	235	Jun-74	2.25	23
St. Lucie 1	470	Jun-76	Jun-77	269	May-75	2.91	25
St. Inria 1	470	Jun-76	Dec-77	318	ăav∽75	2,41	45
St. Inria 1	470	Jun-74	Har -73	318	Jun-75	2.25	48
St. Lucie I	470	Jun-76	Dec-73	318	Dec-75	2.00	68
St. Lucie I	470	Jun-76	Jun-74	366	Dec-75	1.50	76.9
Gt lucip (	470	Jun-74	Ner-74	401	Dec-75	1.00	36

1.....

				Est	iaates		
	Act	tuals				Est.	
			Date of	Total		Years	Ÿ.
Unit Name	Cost	COD	Estimate	Cost	CDD	te COD	Complete
				******			*******
Tudian Bains 7	E70	Au - 7/	P 17	151	1 7 *	7 07	214
Inglan Point S	370	AUG-/5	360-6/ D /D	134	382-/1	3.83	NA
indian Point 3	3/0	HUG-/8	Sep-68	136	101-/1	2.83	NB
Indian Point 3	570	Aug-/8	388-67	135	341-72	2.83	NA
Indian Point 3	570	Aug-/6	Sep-/0	218	JU1-/3	2.83	KA
Indian Point S	370	Aug-/6	far-/1	256	341-/5	2.34	NA
Indian Point 3	370	Aug-/6	fiar-/S	\$17	121-/4	1.33	82.0
Indian Point 3	570	Aug-76	Sep-/3	400	Uct-/4	1.08	85.0
Beaver Valley 1	399	8ct-76	Dec-67	150	Jul-73	5.58	0.0
Beaver Valley 1	599	Oct-76	ñar -68	150	Jun-73	5.25	0.0
Beaver Valley 1	599	8ct-76	Har-69	189	Jun-73	4.25	0.0
Beaver Valley 1	577	0ct-76	Dec-69	192	Jun-73	3.50	0.5
Beaver Valley I	599	Oct-76	Sep-70	219	Jun-73	2.75	5.0
Beaver Valley 1	599	Oct-76	Jun-71	219	0ec-73	2.50	23.0
Beaver Valley 1	599	0ct-76	Sep-71	286	Dec-73	2.25	28.0
Beaver Valley 1	579	8ct-76	Dec-71	286	Jun-74	2.50	30.0
Beaver Valley 1	599	Oct-76	Har -72	309	Oct-74	2.58	35.0
Beaver Valley 1	599	Oct-76	Jun-72	311	Oct-74	2.33	38.0
Beaver Valley 1	599	Øct-76	Sep-72	342	Oct-74	2.08	51.0
Beaver Valley 1	599	0ct-76	Dec-72	340	Oct-74	1.83	58.0
Beaver Valley 1	599	0ct-75	Mar-73	340	May-75	2.17	63.0
Beaver Valley 1	599	0ct-76	Sep-73	409	May-75	1.66	69.0
Beaver Valley 1	577	8ct-76	Nar-74	419	Nay-75	1.17	85.0
Beaver Valley 1	577	Oct-76	Jun-74	419	Jun-75	1.00	92.0
Beaver Valley 1	599	Oct-76	Sep-74	451	0ct-75	1.08	94.0
Beaver Valley 1	599	0ct-76	Dec-74	451	Dec-75	1.00	94.0
Browns Ferry 3	301	Har - 77	Mar -68	124	Oct-70	2.58	12.0
Browns Ferry 3	301	Har -77	Jun-69	149	Oct-70	1.33	26.0
Browns Ferry 3	301	Ner-77	Sep-69	149	Oct-71	2.08	31.0
Browns Ferry 3	301	Har ~77	Jun-70	147	Apr-72	1.83	43.0
Browns Ferry 3	301	Mar -77	Sep-70	149	0ct-73	3.08	. NA
Browns Ferry 3	301	Nar -77	Mar -71	149	Jan-74_	2.84	
Browns Ferry 3	301	Mar-77	Sep-71	149	Feb-74	2.42	
Browns Ferry 3	301	Mar -77	Aug-72	149	Aug-74	2.00	
Browns Ferry 3	301	Har 77	Seo-72	149	0ct-74	2.08	
Browns Ferry 3	301	Mar-77	Har-73	147	Dec~74	1.75	
Browns Ferry 3	301	Mar-77	Sep-73	149	Apr-75	1.58	
Browns Ferry 3	301	Mar-77	Har -74	149	Sep-75	1.50	
Browns Ferry 3	301	Mar-77	Dec-74	149	Jan-76	1.08	
Browns Ferry 3	301	Nar-77	Jun-75	246	Jun-76	1.00	
Brunswick 1	318	Mar - 77	Dec -70	194	Har-76	5.25	4.0
Brunswick I	318	Nar-77	Jun-71	187	Nar-75	3.75	17.0
Brunswick 1	319	Nar - 77	Ber-71	181	Har-75	3.25	30.0
Brunswick 1	318	Har -77	Bec -77	-214	Dec -75	3.00	47.0
Brunswick 1	318	Har-77	Sen-73	251	Dec -75	2,25	50.0
Brunswick 1	318	Har -77	Der -73	244	Der -75	2.00	54.0
Brunswick 1	318	Har - 77	Der-74	281	Nar -74	1.75	71.0
Arunswick f	318	Har-77	Nar - 75	781	Jun-74	1,25	75.0
Brunswick 1	318	Har - 77	Jun-75	329	Har-77	1.75	77 0
Brunewick 1	318	Har -77	Ner-75	379	Har - 77	1.75	91.0 84 ñ
Crystal River 3	299	Har -77	Mar-47	110	Aor -77	5.09	0.0

				Est	laates		
	Act	uals				Est.	
			Date of	Total		Years	ž
Unit Name	Cost	COD	Estimate	Cost	COD	to COD	Complete
		*****					
Country Divers 7	711	¥ 77	1	117	A 70	7 07	۵.4
Crystel River 3	388	1147 - 77 No 77	0005-00 Jun 40	113	HU1-12 A 77	3.83	- 20
Crystal River J	300	Nar-//	JUN-07	148	HβF=/2	2.83	2.U 77 A
Crystal River S	365	nar-17 H 77	368-/1 Dee 72	190	38p-73	2.00	37.0
Crystal River 3	366	nar -//	UEC~//	283	NOV-/4	1.72	aj,j 70 A
Crystal River 3	368	nar-//	388-73 388-73	283	96C-/4	1,30	70.0
Grystal Miver 3	366	nar - / /	nar-/4 D 74	283	nar-/3	1.00	71.U DE A
Crystal Hiver 3	355	nar-//	96C-/4	373	360-76	1.73	73.V 05 A
Crystal River 5	399 775	#37-/}	328-/3	42V	380-78 2 74	1,23	73,V A A
Calvert Clifts 2	333	Apr-//	JUN-6/	103	J20-/4	<b>5.</b> 37	V.V
Calvert Ciltts Z	333	HD7-//	Vec-a/	107	Jan-/4	8.V7 E DI	0.0
Calvert Liiffs 2	333	Apr-//	867-68 No. (8	108	Jan-/4	3.84	V.V D.A
Laivert Liifts Z	333	8pr-//	nar-67	103	Jan-/4	4.34	2.0
Calvert Cliffs 2	333	Apr-//	360-/V	128	385-/ <del>3</del>	3.33	Z1.V
Calvert Cliffs 2	333 775	HPF-//	Nec-/1 New 70	168	338-/4 Jun 74	2.07	40.V
Calvert Cliffs 2	333	HOT-11	nar-/2	158	JUN-/4	2.23	9/1V EJ A
Calvert Cliffs 2	333	Hpr-//	JUN-/2	204	3UN-/4	2.00	34.0
Carvert Cliffs 2	393	Hpr-//	3ep-/2	204	van-/0	2.00	06.V
Calvert Cliffs 2	333	Hpr-//	nar-/3	204	reb-/J	1.72	87.V 77.A
Calvert Cliffs 2	333	HPF-//	388-73	240	JUN-73 Aug 75	2,73	'J.U 70.0
Calvert Cliffs 2	333	897-//	UEC-/3	243	HUQ-73	1.00	/7.0
Calvert Cliffs 2	<b>১১</b> ট 775	807-//	nar-/4 7	213	388-/3 Dec 75	1.30	73.V 77 A
Calvert Cilt+5 2	333 775	HPF-//	dun-/4 Des 73	273	Vec-/3	1.30	73.0
Calvert Clifts Z	333 775	HPT-//	380-14 N 75	130	Jan 77	2,3 <del>4</del>	/1,7 DO /
Calvert Cliffs 2	333 775	HPT-//	nar-/3 D 75	200	Jan-//	1,34	30,3 07 (
Calvert Ciltts 2	333	Ηβ[-//	Dec -/3	231	Jan-//	1.07	72.1
Calar I	800 050	JUN-77	380-00 N (7	137	nav-/1 Nov. 71	4.78	0.0
5818# 1 C-2 1	830 850	JUN-77	nar-5/	137	Nay-/1	4.17	0.0
Salem 1 Color 1	830 050	JUN-77	JUN~07 Par /7	197	nay-/1	3.72 3 DE	0.V 0.0
Dalea I Colon I	830 850	388-77 108-77	369-6/ Dec.47	132	UEC-/1 No=-77	4.23	0.0
odies i Colos i	030 DEA	Jun - 77	UEL-0/ Mem_70	132	の31 <i>二)に</i> りゃってつ	9.1J D 75	9,0 20.0
odieg i Color (	030 050	JUN-77	1121 - 70 Dec 70	237	0ec-72	2.73	10.0
Salem 1 Calam 1	63V 0E4	341777	U2C-70	231	HU17/3	1,00	33.0 AA A
Datem i	030 DEA	JUA~//	328771 C 71	237	Det .74	2.30	40.V 47 A
Ddiem i Color i	050 050	Jun-77	3297/1 Max _72	300 772	0ct-74 0ct-78	3.00 7.50	43,0 50 A
Odiemi Colomi	030 050	1un-77	0ar-72 Bec-72	175	Nor-75	7 75	57 A
odies i Color i	030 050	306-77 Jun-77	Dec-77	41J 107	nar-75 Con-75	1.75	13.0 17 A
ddieg i Coles i	050	Jun-77	DEL-73 Con-74	477 170	320-73 Bor-74	1.75	97,0 90 7
Jaiem ( Colon (	050	Jun-77	359779 Mor_75	010 170	Sec-70 Con-74	1.51	20.5
Dairm i Daviz-Borra (	030 550	998-77 Nov-77	nar-/J Ber-LQ	070 120	Dec-74	1.31	, o. o
Davis-Desse i Rovic-Docco 1	550	Nov-77 Nov-77	050-190 Con-10	200	Dec 74	5,00	0.0
Davis-Desse i	550	Nov-77	Sep-07	761	Dec-74	1.75	2.0
Navie-Nesse i	550	Nov-77	3eg-70 3un-72	700 704	Ber-74	2 50	27.0
Davis Desse 1 Davis-Roces 1	559	Hov-77	Ber-77	740 740	822 17 829-75	7 21	10 A
Davis Jesse 1 Davis-Rosen 1	550	Nov-77	Gen-77	100	Feb-74	1471 7 17	50.0 ·
Navie-Recent	550	Nov-77	Jep-13 Gon-74	4707 A7A	Jun-74	1 75	77 S
Davie-Resse !	552	Nov 11 Nov-77	Har-75	474 474	San-76 San-75	1.51	87.3
Davis-Rosse 1	550	Nov 77 Nov-77	300-75	461	Sen-74	1.01	89.2
Davie-Ress 1	555	Nov-77	Ner-75	573	200 70 Har-77	1.25	95.0
Farley 1	777	Ser -77	Sen-49	144	Anr -75	5,53	0.0
	· • ·	//	ach av		din in		***

6.44

.

				Est	gates		
	Act	uals				Est.	
			Date of	Total		Years	2
Unit Name	Cost	COD	Estigate	Cost	COD	to COD	Complete
~~~~~~			*********				
England 1	707	Ben _ 77	1un70	207	Apr - 75	1 07	0.0
Fafley 1 Fasley 1	121	Den -77	843-70 Con 71	203	Hur-75	7 50	0.0 L A
Farley 1	111	02C-77 Dee 77	320-/1 Mag 77	237	нрг - 73 Лани 75	3.30 5 AQ	0.V 75 5
Farley 1	121	985-17 Dox -77	10-77	474 201	Hpr -73 Doc-75	2.00	33.5 AD 3
Farley 1	121	Dec 77	045-73 Res 77	174 705	026-73 Dec-75	1.30 7.66	72,3
Farley 1	727	985-// Day 77	SEC-13	373 1+5	921-73 Cab_74	1.00	01.) 75 A
Farley 1	707	00C~// D 77	348-/4 Con 74	413	F80-70 Eab-71	1.47	73.V 0 DT
Farley 1	12/	Dec -//	320-/4 N== 71	433 JE/	1 76	1.74	77.1 D1 0
Farley 1	111	Dec~// Dec 77	98C-14 Tur 75	410 207	0-1 7/	1.30	01,V 01 0
Farley 1	127	986-// Dec 77	300-75 0er 75	90/ 500	UCL-/0	1.34	00.0
Fariey 1	/1/	DEC~/} D== 77	UEC-/3	307	JUN-77	1.30	70.V Di 0
Farley 1	727	DEC-11	Jun-/o	514 105	3887// Maa 78	1.00 E 00	
NOTTO HODA 1	/82	Jun-78	737-57 7 10	103	118/-/4 X74	3.00	0.0
North Anna 1	787	JUN-70	VEC-57	281	Mar 74	4.23	1.1 70 A
North Hona 1	782	JUN-/8	JUN-/1	308	187-74 1	2.73	27.0 77 A
NORTH RANA 1	787	JUN-78	360-/1 D 71	210	348-74	2.73	33.U 74 A
North Hona 1	787	JUN-70	DEC-/1 Mag. 70	344 714	JUN-74 Dec 74	2.3V 5 75	34.0
North Anna 1	782	- JUR-/8	Mar-/2	344 7/0	985-74 Dec 74	2,73	43.2 10 /
North Hnna 1	787	JUN-78	58p-72	380	88C-/4 D 74	2.23	47.V EF A
North Hnna 1	782	JUN-/8	98C~72	407	DEC-/4	2,00	33.V E7 A
NOFIN HANE 1	782	JUN-70	nar-/3 0 77	407	HDF-73 Nau 75	2.00	37.V 17 A
Norta Anna 1	782	JUN-78	380-/3	407	Nov-75	1.17	03.4 10.7
North Anna 1	787	JUN-78	VEC-/3	4-31 4-47	NOV-73 Nov-74	1.7 <u>1</u> 7 (7	07.J 77.A
NOFTE HERE I	702	JUA-/0	11257/4 Den 78	940 EA4	177	2.17	72.V 20. A
NOFIN ANNA 1	/82 702	300-73 1ua 70	985-74 Xee 75	304	Jan 77	1.V7 1 04	00.0 70 1
NOFIN HARA I	/82 705	JUN-70	nar-75 Doc-75	000 574	030777 Apr-77	1.8 7 १.२२	70.1 00.7
NUTCH MHHE I	/02 702	300-70	986-73 New, 72	330 517	Nor-77	1.00	07., 00 0
NOF CO HODA 1	101 111	3007/0 1.1.70	nar -/o Naru47	107 175	Apr-77	1.00	00.0 NA
COOK Z	***	381-70	986-07 Jun-10	200	Rp: -72 Con=77	7.00	лл 1 А
COUR Z	***	341-70	000-07 Con-70	233 770	Septit Nor-78	J.LJ 7 50	1.0
COUR 1	744 344	001-70 Tu)_70	220-70 Con_75	337	Apr-79	5.40 7.50	17.V 57 1
Cook 2	777 888	1.1-70	329-73 055-74	105	Hun-79	1.50	97 1
GOUR Z	717	001-70 Nor-79	Aun_LO	733	Nav-74	4 75	92,7 NA
These Wile 1 7	713	DEC-70 Bac_70	600-70	217	1147 77 Hov-78	7.14	na Nč
Three Mile I. 2	715	Dec 78 Dec 79	Sep-70	200 745	Hay 77 Hav-75	3,00	NA NA
Three Hile 1, 2	715	Dec 70 Nor-79	5ep 71 Sun-77	445	Hay 76	7 75	25,0
Three Mile I. 2	715	Ser-79	3un-73	525	Hav-77	3,00	25.0
Three Hile I. 2	715	Sec 70	6an 78 6an 74	520	Hav-78	3.66	60.0
Three Mile I 2	715	Ber -78	3un-75	470	Hay 70	2,92	68.0
Three Mile 1 2	715	Ber-79	8117-75 8117-75	437	Hay 70 Hay-79	1.75	81.0
unee nie is i Ustek 2	509	Sec ,0 Sep-79	Jun-70	199	Anr-76	5.99	HA HA
Hatch 2 Hatch 7	509	Sep 77	Dar-77	330	Apr-79	5.33	11.0
Hatrh 7	509	Sen-79	Sen-73	404	Apr -78	4,58	15.0
Hatch 7	509	Sen-79	Sen-74	513	Apr-78	3.58	23.0
Hatrh 7	509	Sen-79	Sen-75	513	Apr-79	3,58	32.0
Hatrh 7	509	Sen-79	Jun-74	512	Anr -79	2.83	57.0
Arkans== 7	640	Har-AN	Ber-70	183	8ct -75	4.83	0.0
Arkansas 7	440	Har -80	Jun-71	190	Oct-75	4.33	0.0
Artansas 2	648	Har-AO	Dec -71	200	8ct-75	3.83	2.1
Arkansas 2	640	Mar-80	Sep-72	230	Oct-76	4.08	6.9
	- /		· · · -	-	. –		

ļ

ţ

î

	bi			Esti	aates	7 -1	
	HCT	.2315	Dala I	7-1-1		EST.	ų
Unit Wara		CD1)	Date of	lotai	con	Tears	4 Complete
UNIC NAME	6851	487	251184(9	LOSC			CURVIELE
Arkansas 2	640	Mar-80	Jun-73	275	Oct-76	3.33	13.6
Arkansas 2	640	Nar-80	Sep-73	275	Dec-76	3.25	16.9
Arkansas 2	640	Mar-80	Dec-73	273	Dec-76	3.00	18.0
Arkansas 2	640	Har -80	Nar-74	273	Feb-77	2.92	25.0
Arkansas 2	640	Her-80	Jun-74	318	Feb-77	2.67	33.5
Arkansas 2	640	Mar -80	Sep-74	318	Jun-77	2.75	39.8
Arkansas 2	640	Mar - 90	Nar-75	339	Jun-77	2.25	42.7
Arkansas 2	640	Har-80	Jun-75	339	Oct-77	2.34	46.1
Arkansas 2	640	Mar-80	Sep-75	369	Jan-78	2.34	50.4
Arkansas 2	640	Nar -80	Dec-75	393	Nar-78	2.25	56.4
North Anna 2	532	Dec-80	Sep-70	184	Mar -75	4.50	NA
North Anna 2	532	Dec-80	Sep-71	191	Jun-75	3.75	7.8
North Anna 2	532	Dec-80	Dec-71	198	Jun-75	3.50	10.0
North Anna 2	532	0ec-80	Mar-72	198	Jul-75	3.33	16.3
North Anna 2	532	Dec-80	Sep-72	208	Jul -75	2.83	25.0
North Anna 2	532	Dec-80	Dec-72	227	Jul-75	2.58	28.2
North Anna 2	532	Dec-80	Mar-73	227	Oct-75	2.58	31.0
North Anna 2	532	Dec-80	Jun-73	227	Apr-76	2.83	39.3
North Anna 2	532	Dec-80	Sep-73	227	May-76	2.66	42.0
North Anna 2	532	Dec-80	Har-74	240	Nov-76	2.67	47.5
North Anna 2	532	Dec-80	Dec-74	264	Sep-77	2.75	58,1
North Anna 2	532	Dec~80	Mar-75	301	Sep-77	2.51	54.1
North Anna 2	532	Dec-80	Dec-75	301	Nov-77	1.92	64.2
North Anna 2	532	Dec~80	Har-76	311	Nov-77	1.67	67.0
North Anna 2	532	Dec-80	Sep-76	363	Mav-78	1.66	75.0
North Anna 2	532	Dec-80	Dec-76	381	Aug-78	1.66	76.3
North Anna 2	532	Dec-80	Nar-77	426	Aug-78	1.42	80.1
North Anna 2	532	Dec-80	Sep-77	426	Nar - 79	1.49	86.6
North Anna 2	532	Dec-80	Mar -78	467	Mar-79	1.00	90.4
Farley 2	781	Jul-81	Sep-70	183	Apr-77	6.58	0.0
Farley 2	781	Jul -81	Sep-71	233	Apr-77	5.58	0.0
Farley 2	781	Jul-81	Har-73	268	Apr-77	4.08	5.3
Farley 2	781	Jul-81	Jun-73	268	Jan-77	3.59	10.8
Farley 2	781	Jul-81	Dec-73	329	Jan-77	3.09	17.0
Farley 2	781	Jul-81	Jun-74	338	Jan-77	2.59	27.8
Farley 2	791	Jul-81	Sep-74	383	Jan-77	2.34	34.5
Farley 2	781	Jul-81	Dec-74	393	Jun-77	2.50	41.6
Farley 2	781	Jul-81	Jun-75	365	Sep-77	2.25	42.5
Farley 2	781	Jul-81	Dec-75	477	Apr-79	3.33	41.0
Farley 2	781	Jul-81	Sep-76	499	Apr-79	2.58	42.0
Farley 2	781	Jul-81	Dec-76	572	Apr - 79	2.33	42.0
Farley 2	781	Jul-81	Har-77	689	Apr-79	2.08	42.0
Farley 2	781	Jul-81	3นก-77	689	Apr-80	2.83	45.0
Farley 2	781	Jul -81	Dec-77	662	Apr-80	2.33	53.2
Farley 2	781	Jul -81	Har-78	635	Apr-80	2.09	57.0
Farley 2	781	Jul -81	Sep-78	652	Apr-80	1.58	72.4
Farley 2	781	Jul -81	Jun-79	687	Sep-80	1.25	82.3
Farley 2	791	Jul-81	Sep-79	684	Sep-80	1.00	83.7
Sequovah 1	984	Jul -81	Sep-68	161	Uct-73	5.08	0.0
Sequoyah 1	984	Jul -81	Sep-69	187	0ct-73	4.08	1.5

1.101

ĩ

 . •

	Estimates						
	Act	uals.	.			Est.	
			Date of	Total		Years	
Unit Name	Cost	C89	Estimate	Cost	CUD	to COD	Coepiete

Securval 1	984	Jul -81	Jun-70	187	Apr-74	3.83	5.0
Seanovah i	984	Jul-81	Nar-71	213	Apr-74	3.09	13.0
Sennovah i	994	Jol -81	Ber-71	213	393-74	2,58	75.0
Seminyah 1	487	3n1-91	Jun-70	217	Nov-74	7 47	75 A
Compush 1	99A	301-91	Ber-72	225	107 77 Dor-75	2 77	15 0
Senuovah t	004 00A	Jul -01	Jun - 77	225	Npr 75	2.50	57 0
Sequerab 1	994	Jul - 21	Ner-73	223	Jun-74	2.50	57.0 47.0
Convoyan i	001	Jul_Qt	UEL-73 Mar=78	223 717	8411 70 105-71	2.00	45.0 45.0
Sequerat (004 001	101-01 101-01	1121 - 74 Jun - 74	212	0un=70 Aun=76	2.23	63.0 17 A
Sequeran I	104	301-01 1.1_01	0011-74 Cos-74	212	100-70	2413 D 78	57.0 10 A
Sequerat 1	704 004	1.1.01	32µ-14 0 74	313 774	V3117// 7-5-77	1 60	07.V 45 A
Beguuvan I Demonat I	104 104	341791	U2L-/4 D 75	317 773	0311-77 Dec 77	2.07	9J.V 70 A
Sequoyan i	704	Jul 01	384-13 D 75	324 7/8	38µ-//	1.00	70.0
Sequoyan 1	789	381-81	09C-73	384 7/3	500-77 New 70	1,73	70.0
Sequoyan i	784	381-91	JUN-/8	304	nay-/d N 70	1.71	/2.0
Sequoyan 1	784	JU1-01	380~/8	473 175	nay~78 C 70	1,00	dv.v 75.0
Sequoyan 1	784	111-83	Mar-//	4/3	380-/8	1.30	13.0
Sednovau (784	JU1-31	nar-/8	303	187-14	1.00	38.V
sequoyan 1	984	301-81	520-/8	832	UCT~/4	1.08	72.0
Sequoyan 1	784	981-91	JUD-/7	632	3UN-80	1.00	78.0
Salem 2	820	Uct-81	Sep-6/	128	nav-/s	3.66	V.V
Salea 2	820	UCT-81	9ec-6/	128	Rer-/S	5.25	0.0
Salem 2	820	Uct-81	Mar-/0	237	JUI-/S	3.33	NA
Sales 2	820	Uct-81	nar -/1	237	ABT -/4	3.09	HA
Sales 2	820	021-81	JUN-/1	237	96C-/4	3.30	NH NA
Sales 2	820	Uct-81	Sep-71	308	Ray-/S	5.00 7.00	対応
Sales 7	820	Uct-81	9ec-/2	425	nar-/5	3.23	NB
Salem 2	820	Uct-81	Vec-/S	497	560-/6	2.75	N#
Salem 2	820	Uct-81	ñar-74	496	Sep-/6	2.51	41.0
Salem 2	820	Oct-81	Sep-74	495	Nay-79	4.56	48.1
Salem 2	820	Oct-81	Mar-78	619	May-79	1.1/	90.6
McGuire 1	906	Dec-81	Sep-70	179	Nov-75	5.1/	0.0
McGuire 1	906	Dec-81	Sep-71	220	Nov-75	4.17	0.0
McGuire 1	906	Dec-81	Dec-72	220	Har-76	3.25	9.0
McGuire 1	906	Dec-81	Sep-73	220	Nov-76	3.17	22.2
McSuire 1	705	Dec-81	Jun-74	220	Apr -77	2.83	34.9
McGuire 1	906	Dec-81	Sep-74	365	Jan-79	3.33	36.9
McGuire 1	704	Dec-81	Dec-74	384	Jan-78	3.09	43.5
NcGuire 1	906	Dec-81	Jun-76	384	Nay-78	1.91	74.2
McGuire 1	906	Dec-81	Dec-76	384	Feb-79	2.17	81.2
NcGuire 1	906	Dec-81	Mar-77	466	Jan-79	1.84	75.6
McGuire 1	906	Dec-81	Sep-77	466	Jul -79	1.83	86.0
McGuire 1	906	Dec-81	Har-78	549	Jul-79	1.33	86.0
McGuire 1	906	Dec-81	Dec-78	547	Feb-80	1.17	96.0
Sequoyah 2	623	Jun-82	Dec-68	161	Oct-73	4.83	0.0
Sequoyah 2	623	Jun-82	Sep-69	187	Oct-73	4.08	1.5
Sequoyah 2	823	Jun-82	Jun-70	187	Apr-74	3.83	5.0
Sequoyah 2	623	Jun-82	Sep-70	187	Dec-74	4.25	AK
Sequoyah 2	623	Jun-82	Dec-71	213	Nar-75	3.25	NA
Sequoyah 2	623	Jun-82	Jun-72	213	Jul-75	3.08	HA
Sequoyah 2	623	Jun-82	Dec-72	225	Dec-75	3.00	NA

	۸_¥			Est	isates	F .	
	HC1		Noto of	7		tst. Voors	4
Unit Name	Cost	COD	Estimate	Cost	COD	to COD	Complete
Sequoyan 2	623	JUN-82	Jun-/3	225	Aug-/6	3.1/	NA
Sequoyan 2	623	Jun-82	Dec-/S	225	Feb-77	3.1/	NA
Sequoyan 2	623	Jun-82	Jun-/4	313	Apr-//	2.83	NA
Sequoyah 2	623	Jun-82	Sep-74	313	Sep-77	3.00	NA
Sequoyah 2	623	Jun-82	Sep-75	324	May-78	2.66	NA
Sequoyah 2	623	Jun-82	Jun-75	364	Jan-79	2.58	NA
Sequoyah 2	623	Jun-82	Her -77	475	May-79	2.17	45.0
Sequoyah 2	623	Jun-82	Mar-78	535	Har-80	2.00	74.0
Sequoyah 2	623	Jun-82	Sep-78	632	Jun-80	1.75	78.0
Sequoyah 2	623	Jun-82	Mar -79	632	Sep-80	1.51	80.0
Sequoyah 2	623	Jun-82	Sep-79	442	Jun-81	1.75	84.0
Sequovah 2	623	Jun-82	Dec-80	1094	Jul -82	1.58	96.0
Lasalle I	1336	0ct-82	Jun-70	360	8ct-75	5.33	0.0
Lasalle 1	1336	8ct-82	Sep-71	360	Hay-77	5.66	0.0
Lasalle 1	1336	Oct-82	Dec-71	360	Dec-77	6.00	0.0
Lasalle !	1336	8ct-82	Sep-72	407	Dec-77	5.25	0.0
Lasalle i	1336	Oct-82	Har -73	407	May-78	5.17	0.0
Lasalle I	1336	8ct-82	Jun-73	407	Oct-78	5.33	0.0
Lasalle 1	1336	0ct-82	Sep-73	430	Dec-78	5.25	0.0
Lasalle 1	1336	8ct-82	Dec-74	445	Dec-78	4.00	4.0
Lasalle 1	1336	8ct-82	Sep-75	498	Dec-78	3.25	19.0
Lasalle 1	1336	0ct-82	Sep-76	585	Nav-79	2.55	39.0
Lasalle 1	1336	0ct-82	Dec-76	585	Sec-79	2.75	45.0
Lasalle 1	1336	Oct-82	Sen-77	675	Sec-79	2.00	55.0
Lasalle (1336	Oct-82	Nar-79	808	Nar-80	1.00	86.0
Lasalle I	1336	Oct-82	Jun-79	918	0ec-80	1.50	89.0
Lasalle 1	1336	8ct-82	Nec-79	1003	Bec -80	1.00	93.0
lacalle 1	1335	Ort-82	Jun-80	1107	Jun-RI	1.00	98. û
lacalle 1	1336	8ct-87	0er-80	1184	Anr -82	1.33	99.0
Susauehanna 1	21947.0	Jun-83	Jun-49	150	77540	4.00	0.0
Susmehanna I	1947	Jun-83	Sen-49	150	Jun-74	4.75	0.0
Suennebanna I	1947	Jun-97	Ber-70	250	Jun-79	7 50	0.0 0 0
Sucouchanna I	1947	Jun-97	3un-71	777	Jun -79	7 66	0.0
Susnuchanna I	1947	Jun-97	Ner-71	574	Hav-79	7 41	0.0
Sucmuchanna 1	1947	Jun-83	Har - 72	515 545	Hav-79	7 14	0.0
Susquenuma I	1917	Jun-93	Nor-72	707	יי ישוו אבעב70	4 41	0.0
Gusquenanna i Gusquebanna i	1917	Jun-97	Sec 72 Sen-77	910	11 γ 77 Χον-79	5 56	0.0
Susquentanta i	1017	Jun-07	Con-74	010	987-77 869-90	2.00	0.0 & A
Susquenanna i	1017	3un-03	0=p=74	010	Nev-90	5.07	7.V 0 A
	177/	300-03 107	921-74 Max-76	743 1087	107-00 Nev-00	3.71 8 27	3.0 24.0
	17777	1001-03	1181 - 70 Dep - 74	1077	N=00	4.0/	24.0
Susquenanna i	1777/ 1087	305-03	328-70 Dep-74	1032	107-00 Nov-00	7.1/	31.1 70 /
	1777	300-03 700-07	985-70 Mar 77	1032	N= 20	3.12	37.0
ousquenenna i	1797	VUN-83 1 07	nar=// Ma= 70	197/	107-90 E-P 01	3.3/ 7 07	9920 24 A
susquenanna l	1747	JUR-83	787-78 0 70	1173	F29-81	2.72	01.0
susquenanna l	1441	900-93 10- 07	360-/8	1243	re0-81	Z.4Z	/8.1
Susquenanna 1	174/	Jun 27	JUN-/9	1285	rep-81	1.5/	87.7
Susquenanna 1	1947	Jun-83	Sep-/9	160/	Jan-87	2.34	/0.0
susquenanna l	1947	Jun-83	5ep-80	1841	Jan-82	1.55	87.0
Susquenanna 1	1947	Jun-83	far-81	2276	usà-82	2.17	91.0
Susquehanna i	1947	Jun-83	Vec-81	2292	fiav-83	1.41	92.0

5 m 1 m 2

				Est	iaates		
	Act	tuals				Est.	
19-23 M			Date of	Total		Years	
UNIC NAME	LOST	688	Estimate	Cost	683	to CUD	Complete
San Onofre 2	2502	Auo-83	Mar-70	189	Jun-76	6.25	0.0
San Onofre 2	2502	Aug-83	Jun-70	213	Jun-76	4.00	0.0
San Onofre 2	2502	Aug-83	Sep-71	363	Jun-78	6.75	0.0
San Onofre 2	2502	Aug-83	Dec-71	407	Jun-78	6.50	0.0
San Onofre 2	2502	Aug-83	Jun-73	655	Jun-79	6.00	0.0
San Onofre 2	2502	Aug-83	Mar-74	655	Jun-79	5.25	0.0
San Onofre 2	2502	Aug-83	Dec-74	893	Jul-81	6.58	0.0
San Onofre 2	2502	Aug-83	Har-75	1142	Jul-81	6.34	3.0
San Onofre 2	2502	Aug-83	Sep-75	1142	Oct-81	6.08	10.0
San Onofre 2	2502	Aug-83	Jun-76	1210	0ct-81	5.33	23.0
San Onofre 2	2502	Aug-83	Jun-77	1320	0ct-81	4.33	44.9
San Onofre 2	2502	Aug-83	Dec-79	1740	Oct-81	1.83	86.0
San Onofre 2	2502	Aug-83	Mar-80	1824	Dec-81	1.75	86.0
San Onofre 2	2502	Aug-93	Mar-81	2010	Jun-82	1.25	98.0
St. Lucie 2	1430	Aug-83	Dec-72	360	0ct-78 -	5.83	Û
St. Lucie 2	1430	Aug-83	Mar-73	360	Dec-79	6.75	٥
St. Lucie 2	1430	Aug-83	Nar -74	360	0ec-80	6.75	Û
St. Lucie 2	1430	Aug-83	Jun-74	360	Dec-79	5.50	0
St. Lucie 2	1430	Aug-83	Dec-74	537	Dec-79	5.00	0
St. Lucie 2	1430	Aug-83	Sep-75	537	Dec-80	5.25	. 0
St. Lucie 2	1430	Aug-83	Dec-75	620	Dec-80	5.00	0
St. Lucie 2	1430	Aug-83	Sep-76	620	Dec-82	6.25	0.7
St. Lucie 2	1430	Aug-83	Dec-76	850	0ec-82	6.00	0.7
St. Lucie 2	1430	Aug-83	Jun-77	850	Mav-83	5.91	1
St. Lucie 2	1430	Aug-83	Sep-78	845	Nav-83	4.66	13
St. Lucie 2	1430	Aug-83	Dec-79	919	Мау-83	4.41	15.8
St. Lucie 2	1430	Aug-83	Jun-80	1100	Hay-83	2.91	45.1
Succer 1	1283	Jan-84	Har-71	234	Jan-77	5.84	0.0
Summer 1	1283	Jan-84	Sep-72	297	Jan-77	4.33	0.0
Summer 1	1283	Jan-84	Jun-73	297	Jan-78	4.59	0.1
Summer 1	1283	Jan-84	Jun-74	355	Jan-78	3.59	- 2.5
Suemer 1	1283	Jan-84	Dec-74	355	Hav-79	4,41	5.0
Summer 1	1283	Jan-84	Jun-76	493	May-79	2.91	33.0
Sugger 1	1283	Jan-84	Dec-76	635	May-80	3.41	42.5
Sugger 1	1283	Jan-84	Mar-78	675	Mav-80	2.17	67.0
Summer 1	1293	Jan-84	Sep-78	675	Dec-80	2.25	77.0
Summer 1	1283	Jan-84	Mar - 79	756	Dec-80	1.75	82.4
Suemer 1	1283	Jan-84	Mar-80	827	Jun-81	1.25	74.8
Summer 1	1283	Jan~84	Sep-80	827	Dec-81	1.25	95.9
Summer 1	1283	Jan-84	Dec-80	1032	Jun-82	1.50	96.7
Summer 1	1283	Jan~84	Jun-82	1174	Jun-83	1.00	100.0
Summer 1	1283	Jan-84	Sep-82	1174	0ct-83	1.08	100.0

		.			
	Noto of	7-2-2		tsı, Yasır	Y
Unit Nasa	Dale of Fetigate	local Cost	COD	to COD	rnmnists
Callamav 1	Jun-74	839	Oct-81	7.33	Û
Callaway 1	Dec-74	895	Oct-81	6.83	0
Callaway i	Nar-76	780	Oct-81	5.58	1
Callaway 1	Sec-76	1088	Jun-82	5.50	2.7
Callamay 1	Jun-77	1088	8ct-82	5.33	6.9
Callamev 1	Dec-77	1122	0ct-82	4.83	11.2
Callamay 1	Mar - 80	1261	0ct-82	2.58	64
Callaway 1	Dec-80	1533	Apr-83	2.33	74.6
Callaway 1	Sep-81	2100	Jan-84	2.33	75.5
Callaway 1	Sep-82	2850	Dec-84	2.25	84.5
Callaway 1	Dec-82	2850	Jun∼85	2.50	85
Grand Gulf 1	Jun-72	600	Dec-78	6.50	Ú
Grand Gulf 1	Dec-72	656	Jun-79	6.50	0
Grand Gulf 1	Har-73	656	Sep-79	6.50	Q
Brand Bulf 1	Jun-73	656	Jun-79	6.00	Û
Grand Gulf 1	Sep-73	656	Sep~79	6.00	0
Grand Gulf 1	Sep-75	5 89	Sep-79	4.00	11
Grand Gulf 1	Jun-76	689	Jun-80	4.00	25.9
Grand Gulf 1	Sep-76	935	Jun-80	3.75	32.5
Grand Gulf 1	Jun-77	935	Apr-81	3.83	48
Grand Bulf 1	Dec-77	1174	Apr-81	3.33	57.9
Grand Gulf 1	Nar-79	1203	Apr-81	2.08	77.4
Grand Gulf I	Dec-79	1203	Apr - 82	2.33	80
Grand Gulf 1	Dec-81	2391	Feb-83	1.17	96
Grand Gulf I	Jun-82	2859	NA	KA	7 9
Grand Gulf 1	Sep-82	2859	Dec-83	1.25	99
Grand Gulf 2	Sep-73	571	Sep-81	8.00	NA
Grand Gulf 2	Sep-75	NA	Sep-83	8.00	1.6
Grand Gulf 2	Dec-75	699	Sep-83	7.75	6.5
Grand Gulf 2	Sep-76	775	Seo-83	7.00	5.5
Grand Gulf 2	Jun-77	775	Jan-84	6.58	1.7
Grand Gulf 2	Dec-77	954	Jan-84	5.08	2.4
Grand Gulf 2	Jun-79	878	Jan-84	4.58	11.6
Grand Gulf 2	Dec-79	878	Apr -85	5.33	23
Grand Gulf 2	Jun-80	878	Apr-86	5.83	23
Hope Creek 1	Mar-70	574	Har-75	5.00	0
Hope Creek 1	Dec-71	1037	Hay-78	6.42	0
Hope Creek 1	Dec-72	1139	Нау-79	6.42	0
Hope Creek 1	Jun-73	1139	May-81	7.92	0
Hope Creek 1	Dec-73	1461	May-81	7.42	8
Hope Creek 1	Sep-74	1972	Dec-81	7.25	0
Hope Creek 1	Nar-75	1972	Dec-82	7.75	0
Hope Creek 1	Jun-75	2435	Jun-83	8.00	0
Hope Creek 1	Sep-75	1972	Dec-82	7.25	0
Hope Creek 1	Dec-75	2435	Dec-82	7.00	0
Hope Creek 1	Sep-76	2580	May-84	7.67	2
Hope Creek 1	Nar-78	2580	May-84	6.17	6
Hope Creek 1	Jun-78	2890	ñay-84	5.92	8.5
Hope Creek 1	Sep-79	3585	Nay-85	5.67	18.5
Hope Creek 1	Jun-80	4310	Dec-89	6.50	23.5
Hope Creek 1	Sep-80	4595	Dec~86	6.25	24
	Jun-At	5465	Dec-86	5.50	30.5

		Est	laates		
				Est.	
Unit Hann	Date of	Total	000	Years	Cosplete
Hope Creek 1	Sep-81	5512	Dec-86	5.25	33.3
Hope Creek 1	Mar-92	3518	Dec-86	4.75	46
Hope Creek 1	Sep-82	3521	Dec-86	4.25	55,6
Hope Creek 1	Dec-82	3780	0ec-86	4.00	60.6
Ligerick 1	Mar-70	252	Har -75	5.00	0
Limerick 1	Dec-70	414	Har-75	4.25	1
Limerick 1	Jun-71	414	Sep-75	4.25	1
Lizerick 1	Dec-71	414	Nov-76	4.92	1
Ligerick 1	Sep-72	414	Aug-78	5.92	1
Liserick 1	Dec-72	694	Aug-78	5.67	1
Ligerick 1	Jun-73	694	Apr -79	5.83	1
Limerick I	Mar-74	694	Oct-79	5.58	1
Limerick 1	Sep-74	1212	Aor-81	6.58	2
Lizerick 1	Dec-75	1212	Feb-81	5.17	18.5
Liserick 1	Jun-76	1212	Apr-83	6.83	28.6
Limerick 1	Jun-77	1635	Apr-83	5,83	32
Ligerick I	Jun-79	1695	Apr -93	3.83	52
Ligerick 1	Dec-80	2515	Apr -85	4.33	57.6
Limerick 1	Jun-81	2566	Apr-85	3.83	65
Liserick 1	Sep-82	2566	Jan-84	1.33	93.9
Linerick	Dec -82	2657	Apr -85	2.33	83.1
Ligerick 2	Mar-70	223	Har-77	7.00	()
Limerick 2	Dec-70	303	Mar-77	6.25	0
Liserick 2	Dec-71	303	Nov-77	5.92	1
Ligerick 2	Sep-72	303	Jan-80	7.33	1
Limerick 7	Dec-72	512	Jan-80	7.08	. 1
ligerick 7	Jun-73	512	Jun-80	7.00	1
Limerick 7	Nar-73	512	Har-81	8.00	1
Limerick ?	Sec-73	539	Apr -82	8.58	1
Lizerick 2	Har-74	539	Apr-82	8.08	-
Limerick 2	Dec-74	539	Jul -82	7.58	8
Ligerick 2	Jun-76	539	Aar-85	8,83	15.3
Limerick 2	Jun-77	949	Aer -85	7.83	22
Limerick 2	Jun-79	909	Aor -85	5.83	35
Ligerick 2	Dec-80	1581	Oct-87	6.83	26.6
Limerick 2	Jun-Si	1626	Oct-87	6.33	29.4
Lieprick 2	Dec-82	3126	0ct-88	5.83	30
Hidland 1	Jun-68	NA	Feh-74	5.87	0
Midland 1	Sen-70	NA	Nov-74	4.17	1
Nidland 1	Dec-70	NA	Har-76	5.25	2
Nidland 1	Jun-71	NA	Sen-76	5.25	- 2
Hidland 1	Sen-71	NA	Hav-77	5.67	2
Midland 1	8er-71	277	Hav-77	5.47	2
Nidland 1	Bec-72	383	Feb-79	5.17	2
Midland 1	Jun-73	385	Nar -80	6.75	2
Hidland 1	Dec-73	470	Nar - 80	6.25	2.6
Hidland 1	Der-71	470	Har - 87	7.25	9.1
Hidland 1	Nac-75	700	Nar - 87	7.00	9.1
Hidland 1	Jun-74	700	Ner-82	5.75	13
Nidland 1	Nar-87	1695	Jul -84	2.33	74
Midland 2	Har -68	NA	Feb-75	6.92	0
·····	Sen-70	NA	Nev-75	5.17	0.5

		Est	i <i>m</i> ates	r - 1	
	Noto of	Total		tst. Vecto	Y
Unit Namp	Vale ut Estimata	Cost	C80	tn C60	Complete
Midland 2	Dec-70	NA	Har 77	6.25	2
Midland 2	Jun-71	NA	Sep-77	5.25	2
Hidland 2	Seo-71	NA	Hay-78	6.67	2
Hidland 2	Dec-71	277	May-78	6.42	2
Midland 2	Dec-72	383	Feb-80	7.17	2
Midland 2	Jun-73	385	Har -79	5.75	2
Nidland 2	Dec-73	470	Har-79	5.25	2.5
Midland 2	Dec-74	470	Mar -81	5.25	9.1
Midland 2	Nar-75	700	Nar-81	6.00	7.1
Midland 2	Jun-76	700	Mar-81	4.75	16
Midland 2	Sep-32	1695	Dec-83	1.25	84
Palo Verde 1	Jun-74	606	May-81	6.92	0
Palo Verde 1	Sep-74	613	May-81	6.67	0
Palo Verde 1	Har-75	1000	May-82	7.17	0
Palo Verde I	Dec-75	975	May-82	6.42	0
Palo Verde 1	Dec-77	969	Nay-82	4.42	. 21.9
Palo Verde 1	. Nar-78	1263	Nay-82	4.17	24.6
Palo Verde 1	Sep-78	760	May-82	3.67	28.5
Palo Verde I	Mar-79	911	May-83	4.17	43
Palo Verde 1	Dec-79	938	Nay-83	3.42	55.7
Palo Verde l	Nar-80	1354	May-83	3.17	62.3
Palo Verde 1	Jun-80	1429	Nay-83	2.92	68.3
Palo Verde I	Sep-60	1457	May-83	2.67	74.3
Palo Verde 1	Mar-81	1453	May-83	2.17	93,9
Palo Verde 1	Dec-81	1579	May-83	1.42	92.8
Palo Verde 1	Mar-82	1670	May-83	1.17	96.5
Palo Verde I	Mar-83	1671	May-84	1.17	99,3
Palo Verde 2	Sep-74	586	Nov-82	8.17	. 0
Palo Verde 2	Nar - 75	827	May-84	9.17	0
Palo Verde 2	Dec-75	845	May-84	8.42	0
Palo Verde 2	Mar - 78	769	May-84	6.17	1.3
Palo Verde 2	Sep-78	598	Nay-84	5.67	7.8
Palo Verde 2	Jun-79	710	Nay-84	4.92	1/.8
Palo Verde 2	Dec-/9	5/1	May-84	4.42	25.1
Palo Verde Z	Nar-80	827	May-84	4.1/	31,8 77,7
Palo Verde Z	JUN-80	820	May-84	3.92	33,7 47 D
Paid Verde 2	565-9V	948	887-84 Nev 84	3.57	40.7 EE S
Palo Verde 2	nar-81 Car 81	1015	197-94 197-94	3.17	33.3 (5 F
Palo Verde Z	365-91 Mar 00	10/3	R8y~84 ₩ 04	2.0/	00.J 07 (
Palo Verde Z	nar-82 Mar-07	1138	189-04 5-2-05	1.11	02.0 DL Q
Palo Verge 2 Pala Vanda 2	nar-do 1	1130	560-03 Car.05	1.71	70.7
Palo Veroe Z	0011-03 Cen-74	1130	368-09 Men-04	1,13 0 17	·····
Falo Verde J Dala Verde J	384-14 ¥ar-75	000	MagQL	7.07	0
rdiu verue J Pala Varda Z	nsf -/J Nrr_75	741 050	Hay-00	10 13	v A
Fain Actur 9	Bec-/3 Rec-74	73V 0EA	105-01 105-01	17.17 0 EU	V A
rdiu verue J Palo Varda 7	UEE"/0 War_70	730 Q74	3un-04	עניג שר מ	v A 3
Palo Verue 3 Palo Vorde 3	nar -70 Gen-79	934 767	Jun-94	7,75	0.5
Palo Verde X	Jun-79	932 977	Jun-AA	7.00	1.5
Allo Verde J Polo Verde J	nor-70	555 714	Jun-Ak	4,50	4.5
Asia Verde S Asia Uprdo 3	Har-AN	1099	Hav-AA	6.17	7.6
	- AA	1175	Jun-RA	5.00	10.8

. ۰

į.

į

11

		Est	F . 1		
Unit Name	Date of Estimate	Total Cost	COD	Years to CDD	% Complete
Palo Verde 3	 Sep-80	1212	Jun-86	5.75	12.9
Palo Verde 3	Har-81	1255	Jun-86	5.25	18.6
Palo Verde 3	Sep-81	1227	Jun-86	4.75	26
Palo Verde 3	Mar-82	1467	May-86	4.17	36.7
Palo Verde 3	Dec-82	2474	May-86	3.42	52.5
Palo Verde 3	Mar-83	1487	May-86	3.17	61.7
Palo Verde 3	Jun-83	1487	Dec-86	3.50	70.3
San Onofre 3	Nar -70	189	Jun−76	6.25	0
San Gnofre 3	Jun-70	213	Jun-76	6.00	0
San Gnofre 3	Dec-71	409	NA	NA	0
San Onofre 3	Jun-73	655	NA	NA	0
San Onofre 3	Har-74	655	Jun-80	5.25	0
San Onofre 3	Sep-74	655	Jun-81	6.75	0
San Onofre 3	Dec-74	812	8ct-82	7.83	0
San Onofre 3	Jun-75	934	0ct-82	7.33	1
San Onofre 3	Sep-75	934	Jan-83	7.33	2
San Dnofre 3	Jun-76	990	Jan-83	6.58	17
San Onofre 3	Dec-76	996	Jan-83	6.08	20
San Onofre 3	Har -77	990	Jan-83	5.83	24
San Onofre 3	Jun-77	1080	Jan-83	5.58	30
San Onofre 3	Dec-79	1160	Jan-83	3.08	63
San Onofre 3	Mar-80	1216	Jan-83	2.83	60
San Onofre 3	Sep-80	1216	Feb-83	2.42	66
San Onofre 3	Nar-81	1340	Jul-83	2.33	74
San Onofre 3	Har -82	1415	Jul-83	1.33	86
San Onofre 3	Jun-82	1477	Sep-83	1.25	89
San Onofre 3	Sep-82	1668	Sep-83	1.00	91
San Onofre 3	Dec-82	1668	Hay-83	0.42	9 7
San Onofre 3	Nar-83	1668	Jan-84	0.83	92
Skagit 1	Mar-74	900	Jal -81	7.33	0
Skagit I	Dec-74	900	Jul-82	7.58	. 0
Skagit 1	Nar-75	668	Jul-82	7.33	0
Skagit l	Jun-75	984	Jul -82	7.08	0
Skagit l	Dec-75	984	Jul -83	7.58	0
Skagit I	Dec-76	1238	Jul -84	7.58	0
Skagit 1	Sep-77	1601	Mar-85	7.50	0
Skagit I	Sep-78	1793	Sep-86	8.00	0
· Skagit l	Dec-78	1896	Sep-86	7.75	0
Skagit 1	Jun-79	2072	Jan-87	7.58	0
Skagit 1	Mar-81	4249	Jan-91	9.83	0
Skagit 2	Nar-75	561	Jul -85	10.33	0
Skagit 2	Jun-75	714	Jul -85	10.08	0
Skagit 2	Har-76	714	Jul-86	10.33	-0
Skagit 2	Sep-75	870	Jul -86	9.83	0
Skagit 2	Dec-77	1323	Mar -87	9.25	0
Skaqit 2	Jun-78	1418	Sep-88	10.25	ŋ
Skagit 2	Dec-78	1617	Sep-88	9.75	0
Skagit 2	Jun-79	1755	Jan-89	9.58	0
Skagit 2	Mar-81	3560	Jan-93	11.83	0
South Texas 1	Jun-75	574	0ct-80	5.33	AK
South Texas 1	Sep-75	676	Oct-80	5.08	0
South Texas 1	Nar-79	1004	Apr-82	3.08	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

.

:

Landers

P

		Est			
				Est.	U
Unit Nam	Date of Estimate	iotai Cost	COD	tears	4 Cranlata
UNIL MASE					
South Texas 1	Sep-79	1208	Feb-84	4.42	48.3
South Texas 1	Dec-81	1786	Feb-84	2.17	50
South Texas 2	Jun-75	574	Mar-82	6.75	NA
South Texas 2	Sep-75	676	Ner-82	6.50	0
South Texas 2	Har-79	1004	Apr-83	4.08	12
South Texas 2	Sep-79	1208	Feb-86	6.42	15
South Texas 2	Dec-81	1717	Feb-86	4.17	18
Susquetanna 2	Har-74	575	Jun-81	7.25	1
Susquehanna 2	Sep-74	575	Jun-82	7.75	1
Susquehanna 2	Dec-74	502	Nav-82	7.42	6
Susquehanna 2	Nar-75	662	Nav-82	7.17	1.8
Susquehanna 2	Jun-75	700	May-82	6.92	2
Susquehanna 2	Dec-75	689	Nav-82	6.42	6
Susquehanna 2	Mar-76	678	May-82	6.17	7
Susquehanna 2	Ses-74	706	Hav-82	5.67	21.2
Susquehanna 2	Nar-77	713	Nav-82	5.17	30
Susquehanna 2	Sea-77	710	Nav-82	4.67	35.9
Guennohanna 2	Nar-78	735	Nav-87	4.17	44.2
Susauchanna 2	Gen-78	787	Hay-82	3.67	51.7
Quequebanna 7	Jun-79	943	Nay OL Nov-87	7 97	53.6
Susquenanna 2 Suemuntanna 2	9en-79	1081	3-0-83	ייי ד ד	45
Susquentint 1	0ep 17 Ber - 70	1001	Jan-93	7.02	16
Curnuchaera 7	3un-90	1092	0an 00 0un-92	2.00	
Susquenanna 2 Suspustoono 7	Gen-90	1153	hug 02 Δυσ-92	1 07	50 55
Susquestante 2 Surguphanna 7	deprov Nor-91	1133	Hay-91	3.12	55 F,Q
Succustones 7	005-91	121)	Nov-BA	0,17 7 07	3, 55
Susquenanna I Cucauabasaa 7	uec or Jun-97	1500	Not 04 Nov-94	2.12	55 52
Jusquendina I Vestie t	001-02 Con-71	1070	101 07 355-79	1.71	50 A
Anôris i	329-71 Jun-77	রন মন	nyi 70 Anr-70	6.30	Ň
Vuulle (Vaat)a (Gen-72	ип ИА	0rt-70	7 40	ů
YUYLIE I	329-72 Doc-77	88 570	061-77 Apr-90	7.00	۷ ۵
Yagtie i Naatia (DEC-72 Den-77	370 476	Hýr ≃ov An∉30	/.33 L RD	· •
YUGLIE I	329-73 Xon -74	030	HUI -00 Arr-00	0.30 1 AG	
YOQUIE I	nar - / 4 1	031 / 20	NU1 -00	0.00 E 07	0
YOQTIE I	100-74 Mar 77	017	HOF-00	3.83 / 75	0
VOOTIE 1	nar-// Cap .77	617 Na	800-03 Nev-04	0.23 7 17	0 5
VOQTIE I	389-// Dog 77	1677	NBY-04 N 04	1.13	J 5
Vootle 1	DEC-//	1337	Nev-04	0.72 E / 7	3
Vogtie 1	Sep-/8	1388	NOV-84	3.8/	3
Yoqtie i	0ec-/4	1367	NOV-84	4.72	3
Vogtle 1	Jun-80	1/45	Ray-83	4.92	10
Vagtle 1	Jun-82	4085	Nar-8/	4./5	23
Vagtle 1	Sep-82	4613	Nar -87	4.50	40.4
Yagtle I	Dec-82	3722	fier -87	4,25	45
Vogtle 2	Sep-71	NA	Apr-/4	7.58	0
Vogtle 2	Jun-72	沿台	Feb-80	7.57	0
Vogtle 2	Dec-72	NA	Apr-81	8.33	0
Vogtle 2	Har-73	495	Apr-81	8.08	0
Vogtle 2	Sep-73	543	Apr-81	7.58	0
Vogtle 2	Jun-74	534	Apr-81	4.83	0
Vogtle 2	Dec-77	1075	Nov-85	7.92	3
Vogtle 2	Sep-78	1075	Nov-87	9.17	3
Vootle 2	Dec-78	1297	Nov-87	8.72	3

B-18

ſ

	- .				
	11-1 (ويه الجم والله عنها والد ويه الله بالي الله	Est,	U.
Unit Magn	Dele Of Cotients	10tal Cort	C 00	tears	é Casalata
unit nase	CS(104C2	603L			COMPTERE
Vootle 2	Dec-79	924	Nov-87	7,92	3
Vootle 2	Jun-80	988	Nov-87	7.42	1
Voctle 2	Jun-82	1415	Seo-88	6.25	10
Vootle 2	Sep-32	1653	Sec-88	6.00	12.3
Vootle 2	Dec-82	1476	Sen-88	5.75	15
WNP 1	Sep-73	626	Sep-80	7.00	0
HNP 1	Har-75	990	Sep-80	5.50	Ú
446 1	Dec-75	990	Har-81	5.25	Û.7
	Jun-76	1147	Nar-81	4.75	1.2
	Sep-76	1147	Sec-81	5.00	1.5
HNP 1	Dec -76	1057	Sep-81	4.75	1.8
HNP 1	Nar - 77	1087	Sep-81	4.50	2.6
HNP 1	Sec-77	1087	Dec -82	5.25	. 5.8
	Har-78	1164	Dec -82	4.75	9.3
HNP 1	Har-79	1772	Dec -83	4.75	22.2
WHP 1	Sep-79	2114	Dec-83	4.25	31.4
HNP 1	Jun-80	2498	Jun-85	5.00	41,1
WNP 1	Sep~80	2369	Jun-85	4.75	41.1
HNP 1	Jun-81	3460	Jun-86	5.00	51
WAP 2	Mar-71	187	Sep-77	6.50	. 0
WNP 2	Har -72	193	Sep-77	5.50	Û
WHP 2	Jun-72	227	Seo-77	5.25	0
HNP 2	Sep-72	374	Sep-77	5.00	KA
HNP 2	Sep-73	472	Sep-77	4.00	2
HNP 2	Dec-74	562	Sep-77	2.75	13
¥NP 2	Nar -75	608	Jun-78	3.25	15,8
HNP 2	Seo-75	909	Sep-78	3.00	24.8
ANP 2	Dec-75	608	Jul-79	3.58	27.8
WNP 2	Mar-76	794	Jul-79	3.33	29.6
HNP 2	Jun-75	794	Dec-79	3.50	29.7
HNP 2	Sep-76	794	Jun-80	3.75	32
AND 2	Dec-75	901	Sep-80	3.75	35.8
HIP 2	Har -77	905	Sep~80	3.50	39.6
WAR 2	Mar-78	1001	Seo-80	2.50	60.7
WNP 2	Mar-79	1663	Sep-81	2.50	66.8
9MP 2	Sep-79	1757	Sep-81	2.00	77.5
WHP 2	Jun-80	2392	Jan-93	2.58	85.2
编程 2	Sep-80	2306	Jan-83	2.33	85.3
WNP 2	Jun-81	2784	Feb-84	2.67	85.9
Wolf Creek	Dec-74	940	Apr-82	7.33	0
Wolf Creek	Nar-77	1029	Apr-83	6.08	1
Wolf Creek	Dec-79	1296	Apr-83	3.33	47.9
Wolf Creek	Sep-80	1653	Apr-84	3,58	68
Wolf Creek	Dec-81	1927	Nay-84	2.42	79
Wolf Creek	Sep-82	2440	Apr-85	2.58	80
Wolf Creek	Dec-82	2420	Apr-85	2.33	83.3

801

		Est	iaates		
	Nata of	Total		Est. Years	7
Unit Name	Estigate	Cast	003	to COD	Complete
Diablo Canyon 1	Nar-66	154	Har-72	6.01	0
Diablo Canyon 1	Dec-68	154	Jan-73	4.09	0
Diablo Canyon 1	Sep-69	202	Jan-73	3.34	2.2
Diable Canyon 1	Nar-71	202	May-74	3.17	21
Diablo Canyon 1	Sep-71	320	Hay-74	2.57	27.5
Diablo Canyon I	Jun-72	320	Har-75	2.75	46.5
Diablo Canvon 1	Sep-73	320	Sep-75	2.00	72.2
Diablo Canvon 1	Dec-73	397	Sep-75	1.75	78.3
Diablo Canyon 1	Dec-74	397	May-76	1.42	90.6
Diablo Canvon 1	Seo-75	530	Aug-76	0.92	94.4
Diablo Canvon 1	Jun-76	530	Jun-76	0.00	97.8
Diablo Canvon 1	Sep+76	530	Jun-77	0.75	98.5
Diablo Canvon 1	Jun-77	672	Jun-77	0.00	99.2
Diablo Canvon I	Sep-77	672	Jun-78	0.75	99.2
Diablo Canyon I	Jun-78	672	Jun-79	1.00	99.2
Diable Canyon 1	Jun-79	880	Jun-79	0.00	99.2
Diable Canyon 1	Sen-79	880	Jun-80	0.75	99.2
Diablo Canvon 1	Nar-80	880	Jun-81	1.25	99.2
Diablo Canyon 1	Sen-80	1051	Jun-81	0.75	96.5
Diable Canyon 1	Har-Ai	1196	Jun-At	0.25	99.3
Diable Canyon I	Jun-81	1229	Jun-81	0.00	99.6
Dishin Canyon (Son-RI	1747	Jun-A7	0.75	99.7
Diable Canyon 1	Mar-97	1378	Jun-83	1, 25	99.8
Diabla Canyon ?	Ner-49	151	Jul -74	5.58	0
Diable Canyon 2 Diable Canyon 7	900 00 Sen-19	185	Jul -74	4.83	0
Biablo Canyon 2	Har-71	185	Nav~75	4.17	0
Diable Canyon 2	900-71	282	Hay-75	3.67	2.5
Dishin Canyon 2	Jun-77	292	Har-76	7,75	9,9
Diablo Canyon 2	9 Gen-73	282	Jun-76	2.75	33
Diablo Canyon 2 Diablo Canyon 2	. 32p 70 Ner-74	475	Har-77	2.25	50.2
Diablo Canyon 2 Diablo Canyon 2	9 Gen-75	425	Aun-77	1.97	64.8
Diablo Canyon 1 Diablo Canyon 7	. 32970 Jun-74	425	Jun-77	1 00	79
Diable Canyon 2 Diable Canyon 2	Jun-77	549	Jun-77	0 00	89.4
Diabla Canyon 2	. 000 77 Gen-77	549	Jun-78	0.00	90.9
Diablo Canyon 2 Diablo Canyon 2	1 Har-79	519	Jun-79	1.25	93.5
Diable Canyon 2 Diable Canyon 2		549	Jun-AA	1.50	94.9
- Diablo Canyon 2 - Diablo Canyon 2	Jun-79	721	Jun-90	1.00	97.9
Diable Canyon 2	. 00077 Bor-79	721	Jun-Al	1 50	97 9
Diable Canyon 1	Sen-20	941	Jun -97	1 75	89.1
Bishlo Canyon 2	. Jep 50 Har-Ot	071	Jun 22	1 25	00 7
Diable Canyon 2		1025	Jun-97	1 00	90.5
Diable Canyon 2	Con-Di	1013	Jun-97	0.75	7010 Q1
Diable Canyon 2	. dep di Mar-07	1174	Jun-97	1 75	91.7
Dishla Canyon 2		1120	Jun-QA	1.10	05
- Passer Usling 5	Dec-02	702	¥ar -79	A 25	5
Bosupe Usling 7	. UEL-/1 Har-70	710	Har-70	7 VU	۰ ۸
Basyor Usliny 2		710	Jun-70	6.0V 6.25	
Beaver Valley 1		500 707	Jun=70	5,75	о О
Desiter Talley A	aep=73	573	Jun-70	5.75	0
Bosuce Unling 7		100 105	Jun-At	4 75	0.05
Deaver Valley 2	. 3247/4 Doc-74	200 205	0007-01 Ang-01	دریں ۲. ت	0.05 0.05
DERVER ADITER T	. Bec*/4	603	nys -01	0.07	ليلا د ت

		7 .1			
	Rob- of			EST. Vacad	4
Haik Nama	vate of	Cast	COD	tears	2 Complete
Unit name	C2(188(2				C0801575
Reaver Valley 7	Nar-75	796	Hav-81	6.17	0.05
Reaver Valley 7	Jun-75	796	Apr-81	5.84	0.05
Reaver Valley 7	Sen-75	799	Apr-91	5.59	0.05
Reaver Valley 7	0ec-75	793	Apr -81	5.34	0.05
Reaver Valley 2	Jun-76	927	Nav-87	5,92	0.1
Resuer Velley 7	Sen-74	922	Nav-87	5.67	0.5
Resver Valley 7	Har-77	935	Hay-82	5.17	6
Reaver Valley 7	Jun-77	934	Nav-87	4.97	8
Resver Valley 7	Dec-77	942	Hay-82	4.42	15
Reaver Valley 7	Jun-79	1010	Nay-82	3.92	20
Desity Jalley 2 Desver Valley 2	Sen-79	1415	Hay OL Xay-94	5.47	26
Beaver Uslley 7	Gan-79	2024	Hav-84	4.67	34.5
Deaver Walley 2	Der-79	7073	Hav-RA	6.47	35.2
Beaver Valley 2	Sen-90	2203	Nay 00. Nav-94	5.67	41.2
Beaver Valley 2	Der-Si	2705	Hay 20 Hay-86	4,47	47.8
Beaver Valley 2	Der-97	3074	Hay-96	3 47	58.1
Deaver failey 1 Opilalopta (Bec 32	DVVC NA	Jul -77	6.59	0
Bellefunce i Bellefeste i	Ner-71	מה כוד	Jul -77	5,50	ŷ
Delletunce i	Dec 71	719	Con-70	5.57	0
Belletunce i Pollofonto i	Boc-73	710	Nor-70	4 00	ñ
Delletonie i Dellefonie i	Gen-74	1070	Sec	5.00	ů
Belletonte i Delletonte i	3ep-74 Mar-75	792	Jun-90	5.25	उ र
Belletonte i Delletonte i	nar-75 Con-75	702 507	ປປກ-90 ໃນກະຊິດ	3.20	24
Belletonce i Belletonce i	5ep-70 Con-77	207	Jun-90	2.75	1. 1.
Belletunce i	Sep-77	431 177	7un-00	2.13	,0 52
Delletonie i Delle(sete i	Dec-77	707	Con-QI	7 00	20
Belletonte l	Sep-70 Con-79	1001	Con-27	1 00	69
Dellerunce i Delleconto l	Sep-77	1001	0ep 00 Nor-85	5.00	57
Delletunce i	Sec-30	1037	Jun-94	1 75	73
Bellefonte i	3ep-01 Mar-27	1034	Jun-94	4.75	79
Delletonie i	101 02	1740	Nov-24	4 42	90
Dellefonte i	Con-22	1707 771A	Nov-84	A 17	90 81
Delletonte i	3ep-02 8ec-70	2114	Anr -79	7 71	0
Dellefonte /	Dec-70	85 717		7:07	v
Delletonie 2	Dec 71	749	Jun-90	7 50	0
Dellefonte I Dellefonte 7	Der-73	740	Sen-90	5 76	0
Delletunce 2 Delletente 7	Per 73 Per 78	370	Dep 00	5 25	v
Pelletonce 2	acp 77 Nov-75	107	Hor-Oi	6 01	۵
Belletonce 2 Belletente 2	nar-75 Con-74	507	Max-91	7 75	v
Delletonce 2 Delletonce 2	Sep-70	795		7 75	
Delletonte 2	3ep-77 Doc-77	232	101 -01 Max_01	250	
Belleronte 2 Dellefonte 2	Gen-79	707	100-01	7 75	82
perference 2	3ep-78 Cop-79	1001	Junega	3.75	19
Bellefonte 2	32µ-/7 Con_00	1001	Son-84	τ./s ζ ΛΛ	57
BEITETUNCE 1 Dellefente 7	386-01	1001	Gen-04	5 51	50
Bellefonte 2	nar-01 8 04	1937 1053	Sep-00	5 AA	تر لي د
Selletonte 2 Delletonte 2	389-51 807	1039	329*00 Jun-07	3.00	LA
deileronte 2 Delle/sets 2	лаг-d2 1	1747	Vav-07	J.LJ 5 17	דני 17
pelletonte 2 Palla(anta 2	VUR-82 Con_92	1/07	Nov-07	387£ 5 (7	18 40
Belieronie 2 Desiduced (329-02 879	501	nuv-a/ Art-70	5.17 L 01	00 A
praiowoog i Deciduced (UEC=// Mare_77	517	0-1-70	0.07 1 50	. A
dra10#000 1	nar-/S	1 2 ک	46677	9.J7	· V

Estigates Est. 1 Date of Total Years Unit Name Estimate Cost to COD Complete 683 0 Braidwood 1 Jun-73 517 Oct-80 7.34 6.67 0 Braidwood 1 Sep-73 513 May-80 Braidwood 1 May-80 5.92 0 Jun-74 567 0 Braidwood 1 Sep-74 Oct-81 7.09 567 Braidwood 1 Bec-74 Oct-81 6.84 0 616 Braidwood 1 Sep-75 618 Oct-81 6.09 0.25 Braidwood 1 Har-76 Oct-81 5.59 1 716 5.08 6 Braidwood 1 Sep-76 718 Oct-81 21 4.08 Braidwood 1 Sep-77 829 Oct-81 Braidwood 1 Dec-78 902 Oct-81 2.84 45 Braidwood 1 Jun-79 991 Oct-82 3.34 53 Breidwood 1 54 Dec-79 Oct-83 3.84 1141 56 Jun-80 Oct-85 5.34 Braidwood 1 1585 59 4.84 Braidwood 1 Dec-80 1575 Oct-85 Braidwood 1 Dec-81 1635 Oct-85 3.84 61 7.84 Q Braidwood 2 Dec-72 446 Oct-80 Oct-80 7.59 0 Braidwood 2 Har-73 413 Braidwood 2 Jun-73 428 Har-82 8.75 0 Sep-73 ŋ Braidwood 2 428 Oct-81 8.09 Oct-81 7.34 0 Braidwood 2 Jun-74 417 Braidwood 2 Sep-74 417 Oct-82 8.09 ŷ 7.84 0 Braidwood 2 Dec-74 442 Øct-82 6.59 8ct-82 1 Braidwood 2 Har-76 485 4 Braidwood 2 Sep-76 486 Oct-82 6.08 5.08 18 Braidwood 2 Sep-77 519 Oct-82 3.84 36 Braidwood 2 Dec-78 601 8ct-82 4.34 42 Braidwood 2 Jun-79 679 Oct-83 Dec-79 8ct-84 4.84 43 769 Braidwood 2 Braidwood 2 Jun-80 1011 Oct-86 6.34 44 Oct-86 5.84 47 Braidwood 2 Dec-80 1015 Oct-86 4.84 48 Braidwood 2 Dec-81 1075 53 Mar-83 1275 Oct-86 3,59 Braidwood 2 7.34 0 Jun-71 400 Oct-78 Byron 1 7.84 Q Syron 1 Dec-71 400 Oct-79 Har-72 400 Oct-78 6.59 Q Byron 1 Sep-72 6.67 ٥ Byron 1 464 May-79 6.67 0 Byron 1 Sep-73 464 May-80 5.92 0 Byron 1 Jun-74 May-80 537 6.09 0 Syron 1 Sep-74 537 8ct-80 Dec-74 Oct-80 5.84 0 Syron 1 550 Sep-75 5.09 1 551 Oct-80 Syron 1 Oct-80 4.59 6 Byron 1 Har-76 663 12 Oct-80 4.08 Byron 1 Sep-76 664 4.25 14 Byron 1 Dec-76 664 Har-81 3.50 27 Byron 1 Sep-77 835 Mar-81 33 Dec-77 3.75 862 Sep-81 Byron 1 52 0ec-78 984 Seg-81 2.75 Byron 1 60 Byron 1 Jun-79 1116 8ct-82 3.34 2.84 65 Byron 1 Dec-79 1168 8ct-82 Jun-80 1483 Oct-83 3.33 69 Byron 1

1481

Dec-80

Byron 1

U.L.

8ct-83

2.83

B-22

73

ŕ

;

		Esti			
Unit Name	Date of Estimate	Total Cost	COD	Est. Years to COD	Z Complete
Rvrnn l	Dec-81	1635	Feb-84	2.17	79
Byron I	Har-83	1979	Jun-84	1.25	89
Byrnn ?	Jun-71	350	Oct-79	8.34	0
Byron 2	Der-71	350	Oct-80	8.84	0
Burnn 7	Nar-77	350	8+-79	7.59	0
Byron 2 Byron 2	Jun-72	427	Nar-RO	7.75	0
Burnn 7	San-73	477	Hav-At	7.67	0
Byrnn ?	Jun-74	438	Hay-Ri	6.97	0
Burnn 7	5an-74	479	net-82	8.09	0
Burnn ?	Ber-74	120	Brt-R7	7 94	0
Byron 2 Byron 2	Gen-75	479	Art-87	7.09	1
Byron 2	Har-74	497	Act-87	4.59	4
Byron 2	9en-74	489	0rt-97	6.08	9
Byron ?	Sen-77	539	0rt-97	5.08	23
Syron 2	Ber-79	400 404	8-7-92	3.84	47
Byron 2 Byron 7	Jun-79	707	Nr+-93	4.34	48
Byron 2 Byron 7	Bpr - 79	777	0-1-83	7.94	53
Buren 7	Jun-90	977	0r+-84	A 74	55
Byron 2	Dec-SG	97A	Ort-84	7.94	55
Dyrun 1 Durnn 7	Dec-Ot	1007	601 07 505-95	3.17	6. 43
Dyrum I Corroll County 1	Jun-78	1012	0rt-97	9 73	0
Carroll County 1	Gan-74	100	Det-94	10.00	¢ ۵
Carroll County 1	3ep-74	060 040	Dr+_04	47.01 A7.0	0
Carroll County 1	000-75 Sec-75	940	001-09	0 9A	ñ
Carroll County 1	Har-76	920	0ct-03 0rt-85	0 59	ů
Corroll County 1	Nor-74	1090	0ct 00	9 94	0
Carroll County 1	Dec-79	2014	000	0.04	0
Carroll County 1	Jun-79	2010	021 00 0rt-90	11 74	Û.
Carroll County 1	8er-79	2100	0ct /0 0rt-92	17.84	ů N
Corroll County 1	Jun-80	2070	Sct 72 Srt-97	12.03	0 0
Carroll County 1	Ner -80	3494	8-1-93	12.84	0
Carroll County 1	Ber-Si	8070 NA	Dr+-93	11.94	. 0
Carroll County 1	Har-87	NA NA	DEC 70	NA	Ő
Carroll County 7	Jun-74	540	Brt-83	9.74	0
Carroll County 2	San-74	540	0ct 30 0ct-85	11.09	0
Carroll County 2	Jun-75	680	Brt-85	10.34	0
Carroll County 2	Ner-75	480	nrt-86	10.84	0
Carroll County 2	Har-76	730	Brt-96	10.59	0
Carroll County 2	Ner-74	780	Det-96	9.84	0
Carroll County 2	Der-79	1250	Act-89	10.84	0
Carroll County 2	Jun-79	1475	8ct-91	12.34	0
Corroll County 2	Der-79	1725	Art-97	13.94	0
Carroll County 2	Jun-AD	1952	0rt-93	13.34	0
Carroll County 2	Ner-RA	7814	0r+-94	13.84	0
Carroll County 2	Ber-Al	NA	NA	NA	0
Salioli Councy 1 Catawha I	Ber-77	317	Δu	NG	NA
Satawha i	Har-73	317	Har-79	6.00	0
Cotombo i	Jun-74	317	Jul -79	5-08	Û
fatawa i	Gen-71	102,	Jan-At	6.34	0.5
Catawha I	Dor-74	547	Jan-81	6.09	0.7
Catawha 1	Nar-77	649	Jul-At	4.34	11.5
30 M % 10 F7 10 % 4					

		Est	iaates	r-1		
	Date of	Total		Est. Years	7	
Unit Name	Estimate	Cost	COD	to COD	Complete	
an						
Catamba I	far-78	673	Jui-81	5.54	28	
Catawba l	Nar-14	/34	Jui-81	2.34	47	
Catawba I	Sep-/9	/54	98-109	5.85	6j	
Catamba 1	Jun-80	754	ñar -84	5.75	73	
Catamba 1	Sep-80	1034	Har-84	3.50	76	
Catawba 1	Nar -81	1369	Nar-84	3.00	82.2	
Catamba 1	Dec-81	1361	Har-84	2.25	86.4	
Catawba I	Jun-82	1361	Jun-85	3.00	90	
Catamba 1	Dec-82	1800	Jun-85	2.50	92	
Catamba 2	Dec-72	317	Har-80	7.25	0	
Catamba 2	Jun-74	317	May-80	5.92	0	
Cata¤ba 2	Sep-74	498	Jan-82	7.34	0	
Catawba 2	Dec-74	542	Jan-82	7.09	Q	
Cata¥ba 2	Dec-76	542	Jun-83	6.50	9.5	
Catawba 2	Har-77	649	Jan-93	5.84	11.5	
Cata¥ba 2	Nar-78	673	Jan-83	4.84	22	
Catamba 2	Har-79	754	Jan-83	3.84	37	
Catamba 2	Sep-79	754	Jan-85	5.34	46	
Catamba 2	Dec-79	754	Jan-85	5.09	12	
Catamba 2	Jun-80	NA	Sep-85	5.25	15	
Catamba 2	Sep-30	1034	Sep-85	5.00	16.7	
Catawba 2	Mar-81	1369	Sep-85	4.51	29.5	
Catamba 2	Dec -81	1567	Sep-85	3.75	35.5	
Catawba 2	Jun-82	1567	Jun-87	5.00	45.6	
Catamba 2	Dec -82	2100	Jun-87	4.50	47	
Clinton 1	Sep-73	404	Jun-80	6.75	0	
Clinton 1	Dec-73	435	Jun-80	6.50	0	
Clinton 1	Dec-74	561	Jun-81	6.50	រ	
Clinton 1	Dec-75	705	Jun-81	5,50	ŋ	
Clinton 1	Sep-76	825	Jun-81	4.75	6	
Clinton 1	Har-77	825	Dec-81	4.76	10	
Clinton 1	Dec-77	1051	Dec-81	4.00	20	
Clinton 1	Har-78	1220	Dec-82	4.75		
Clinton 1	Dec-78	1297	Dec-82	4.00	36	
Clinton 1	Nar-80	1397	Dec-82	2.75	66	
Clinton 1	Dec-80	1742	Sep-83	2.75	73	
Clinton 1	Har-82	NA	Sep-83	1.50	82	
Clinton 1	Jun-82	1819	Sep-84	2.25	83	
Clinton 1	Har-83	2181	Sep-84	1.51	87.3	
Clinton 1	Jun-83	2868	Nov-86	3.42	80.9	
Clinton 2	Sep-73	368	Jun-82	8.75	0`	
Clinton 2	Dec-73	367	Jun-83	9.50	0	
Clinton 2	Dec-74	487	Jun-84	9.51	0	
Clinton 2	Dec-75	604	Jun-84	8.51	0	
Clinton 2	Sep-76	699	Jun-84	7.75	0	
Clinton 2	Har-77	699	Jun-88	11.26	0	
Clinton 2	Dec-77	1059	Jun-88	10.51	0	
Clinton 2	Har-82	2181	Jun-88	6.26	3	
Clinton 2	Mar-83	NA	Jun-88	5.24	3	
Fermi 2	Har-69	221	Feb-74	4.93	0	
Fersi 2	Mar-70	250	Feb-74	3.93	0	

		Est	imates	- ,		
	• • •			552.		
	Date of	Total		Years	7	
Unit Name	Estimate	Cost	000	to CUD	UCAPIELE	
Ferni 2	Seo-70	259	Feb-74	3.42	0	
Fermi 2	Jun-71	328	Feb-75	3.67	4,8	
Ferni 7	Der-71	328	0ct-75	3.84	13.2	
Ferni 2	Mar-72	409	Oct-75	3.59	17.2	
Ferni 2	Jun-72	409	Apr-76	3.84	20.4	
Fermi 2	Dec-72	437	Aua-76	3.67	28.5	
Ferai 2	Sep-73	500	Apr-77	3.58	44.4	
Fermi 2	Dec-73	501	Apr-77	3.33	47.5	
Fermi 2	Jun-74	501	Apr-78	3.84	NA	
Ferai 2	Sep-74	501	Apr-79	4.58	45	
Fermi 2	Jun-75	899	Sep-80	5.26	45	
Fermi 2	Nar-77	882	Dec-80	3.76	46	
Ferni 2	Mar-79	973	Dec-80	7.76	78.7	
Fersi 2	Jun-79	973	Har-82	2.75	81.5	
Ferai 2	Jun-80	1283	Mar-82	1.75	79.4	
Ferni 2	Seo-80	1800	Nov-83	3.17	79.4	
Fermi 2	Mar-81	1800	Nov-83	2.67	HA	
Fermi 2	Jun-81	1968	Nov-83	2.42	85	
Fermi 2	Sep-81	1994	Nov-83	2,17	87	
Ferni 2	Sep-82	2346	Nov-83	1.17	92	
Ferai 2	Jun-83	2596	Jul-84	1.08	96	
Hartsville A-1	Mar-73	378.5	Dec-80	7.76	0	
Hartsville A-1	Dec-74	601	Dec-80	6.01	0	
Hartsville A-1	Sep-75	601	Dec-81	6.25	0	
Hartsville A-1	Jun-76	601	Feb-83	6.67	0	
Hartsville A-1	Sep-76	602	Feb-83	6.42	4	
Hartsville A-1	Dec-76	602	Feb-83	6.17	1	
Hartsville A-1	Jun-77	602	Jun-83	5.00	3	
Hartsville A-1	Sep-77	854	Jun-83	5.75	5	
Hartsville A-1	Sep-78	853	Jun-83	4.75	13	
Hartsville A-1	Sep-79	1418	Jul -86	6.84	21	
Hartsville A-1	Dec-90	NA	Jul -88	7.59	31	
Hartsville A-1	Mar-81	1973	Jul -88	7.34	33	
Hartsville A-1	Sep-81	3368	Apr-91	9.59	35	
Hartsville A-2	Har-73	379	Dec-81	8.76	0	
Hartsville A-2	Jun-74	NA	Dec-81	7.51	Q	
Hartsville A-2	Sep-75	601	Dec-82	7.25	0	
Hartsville A-2	Jun-76	601	Feb-84	7.67	ŷ	
Hartsville A-2	Sep-76	602	Feb-84	7.42		
Hartsville A-2	Dec-76	602	Feb-84	7.17		
Hartsville A-2	Jun-77	602	Jun-84	7.01	1	
Hartsville A-2	Sep-77	854	Jun-84	6.75		
Hartsville A-2	Sep-78	853	Jun-84	5.75		
Hartsville A-2	Sep-79	1418	Jul -97	7.84	8	
Hartsville A-2	Dec-80	NA	Jul -97	6.58		
Hartsville A-2	Mar-81	1973	Apr-89	8.09	25	
Hartsville A-2	Sep-81	3368	Apr-92	10.59	27	
LaSalle 2	Jun-70	300	0ct-76	6.34	0	
LaSalle 2	Sep-71	300	May-78	6.67	0	
LaSalle 2	Dec-71	300	Sep-78	6.75	0	
LaSalle 2	Sep-72	330	Sep-78	6.00	0	

.

		Esti	aates			
				Est.		
	Date of	Total		Years	I.	
Unit Nase	Estimate	Cost	COD	to COD	Complete	
		770	¥70	د ۵۵	۸	
Laballe 2	. <u>nar-/</u> 3	330	825-17 8-1-70	0.00 L 78	0	
Laballe 1	JUN-/3	330	UC1-77 Xeve 70	5:34	V A	
Laballe 2	Sep-73	191 787	nay-/7	3.3/	0	
LaSalle Z	Sep-/4	343 750	UCT-/9	3.08	ນ 7	
LaSalle 2	Vec-/4	739	UCT-/7	ት .2ት * ^0	د و ا	
LaSaile 2	Sep-/S	244	UCT-/9	4.08	14	
LaSalle 2	Dec-/5	400	36b-9A	3./3	37	
LaSalle 2	Sep-//	515	Sep-80	5.00	40 50	
LaSalle 2	Vec-/8	580	Sep~80	1./3	75 10	
LaSalle 2	Jun-/9	729	0ec-81	2.50	67	
LaSalle 2	Dec-79	649	Dec-81	2.00	/ 4 70	
LaSalle 2	Jun-80	786	Jun-82	2.90	/8	
LaSalle 2	Dec -80	8/4	Vec -82	2.00	d1 0/ 5	
LaSalle 2	far-81	8/4	ปนก-83	2.25	81.0	
LaSalle 2	Dec-81	1027	Uct-83	1.83	84	
LaSalle 2	Jun-82	1026	Oct-83	1.33	87	
LaSalle 2	Har-83	1018	Apr -84	1.09	47	
Narble Hill I	Dec-74	500	Jun-83	8.50	0	
Marble Hill 1	Jun-75	744	Jun-82	7.01	NA	
Marble Hill 1	Jun-76	791	Jun-82	6.00	NA	
Marble Hill 1	Sep-76	811	Jun-82	5.75	NA	
Marble Hill 1	Dec-76	416	Jun-82	5.50	NA	
Marble Hill 1	Mar-77	463	Jun-82	5.25	0	
Marble Hill 1	Jun-77	505	Jun-82	5.00	0	
Marble Hill 1	Sep-77	506	Jun-82	4.75	NA	
Marble Hill I	Dec-77	511	Sep-82	4.75	NA	
Marble Hill 1	Jun-78	511	Oct-82	4.34	8	
Marble Hill 1	Nar-79	989	NA	NA	19	
Marble Hill 1	Jun-79	989	0ct-82	3.34	22.5	
Marble Hill 1	Jun-80	2001	Dec-86	6.50	20	
Marble Hill 1	Sep-81	2504	Dec-86	5.25	34	
Marble Hill 1	Sep-82	2725	Dec-86	4.25	42.9	
Marble Hill 2	Dec-74	600	Jun-84	9.51	0	
Marble Hill 2	Jun-75	620	Jun-84	9.01	0	
Marble Hill 2	Jun-76	670	Jun-84	8.01	0	
Marble Hill 2	Sep-76	675	Jun-84	7.75	0	
Marble Hill 2	Dec-76	385	Jun-84	7.50	0	
Marble Hill 2	Har-77	317	Jun-84	7.26	0	
Marble Hill 2	Jun-77	346	Jun-84	7.01	0	
Marble Hill 2	Dec-77	353	Jun-84	6.50	0.4	
Marble Hill 2	Nar-78	353	Jan-84	5,84	0.4	
Marble Hill 2	Har-79	818	Jan-84	4.84	5.2	
Marble Hill 2	Jun-80	1383	Dec-87	7.50	9	
Marble Hill 2	Sep-81	1730	Dec-87	6.25	14	
Marble Hill 2	Dec-81	1383	Dec-87	6.00	10	
Marble Hill 2	Jun-82	1730	Dec-87	5.50	20	
Marble Hill 2 -	Sep-82	2260	Dec-87	5.25	25	
Marble Hill 2	Dec-82	2260	Jun-88	5.50	27.3	
McGuire 2	Sep-70	179	Nov-76	6.17	0	
McGuire 2	Mar-71	179	Har-77	6.01	0	
McGuire 2	Sep-71	220	Har-77	5.50	0	

.

	Estimates			5-1		
	Data al	Tatal	*****	ESI, Vonto		
Unit Name	Fetimate	Cost	ເດກ	ta CDD	foeniste	
4 m = + + + + + + = =	*******					
McGuire 2	Sep-73	220	Sep-77	4.00	16.4	
McGuire 2	Jun-74	220	Nov-77	3.42	27.7	
McGuire 2	Sep-74	365	Jan-79	4.34	29.8	
McGuire 2	Dec-74	384	Jan-79	4.09	35.3	
NcGuire 2	Jun-76	384	Nay-79	2.92	55.9	
McGuire 2	Dec-76	384	Feb-80	3.17	55.6	
McGuire 2	Har-77	466	Jan-80	2.84	50.1	
McGuire 2	Sep~77	466	Mar-81	3.50	54	
McGuire 2	Mar-78	549	Har-81	3.00	51	
McGuire 2	Har-79	635	Har-Bi	2.00	56	
McGuire 2	Sep-79	635	Apr -82	2,58	67	
McGuire 2	Jun-80	635	Sep-82	2.25	83	
McGuire 2	Sep-80	765	Sep-82	2.00	89	
McGuire 2	Mar-81	921	Jun-83	2.25	90.2	
McGuire 2	Dec-61	1057	0ct-83	1.83	93.7	
McGuire 2	Sep-82	1059	Nar-64	1.50	97.2	
McGuire 2	Dec-82	1069	Mar-84	1.25	98	
Millstone 3	Har-74	642	Hay-79	5.17	0	
Millstone 3	Mar-75	793	Nov-79	4.67	5.8	
Millstone 3	Dec-75	793	May-82	6.42	7.7	
Millstone 3	Jun-76	998	Hay-82	5.92	9.9	
Millstone 3	Ma <i>r-</i> 77	1173	Nay-82	5.17	12.3	
Millstone 3	Dec-77	1173	Nay-86	8.42	18,3	
Millstone 3	Sep-78	1980	May-86	7.67	24.5	
Willstone 3	Dec-80	2573	Nay-86	5.42	33.3	
Hillstone 3	Dec-81	2577	Nay-86	4.42	43	
Hillstone 3	Dec-82	3539	May-86	3.42	60.3	
Nine Mile Point 2	Dec-71	370	Jul-78	6.59	0	
Nine Mile Point 2	Sep-72	370	Nov-78	6.17	0	
Nine Mile Point 2	Dec-73	602	Nov-78	4.92	0	
Nine Mile Point 2	Mar-74	609	Hay-79	5.17	0	
Nine Mile Point 2	Mar-75	749	Oct-82	7.59	1	
Nine Mile Point 2	Jun-76	793	Oct-82	6.34	1.4	
Nine Mile Point 2	Mar-77	1107	Oct-82	5,59	9.5	
Nine Mile Point 2	Jun-77	1154	8ct-82	5.34	12.9	
Nine Mile Point 2	Dec-77	1505	Oct-83	5.84	17.5	
Nine Mile Point 2	Dec-78	1954	Oct-84	5.84	24.1	
Nine Mile Point 2	Har-80	1963	Oct-84	4.59	37	
Nine Mile Point 2	Jun-80	1953	Oct-84	4.34	37.7	
Nine Mile Point 2	Dec-80	3612	Oct-86	5.84	29.5	
Nine Mile Point 2	Mar-81	3727	Oct-86	5.59	27.7	
Nine Mile Point 2	Dec-82	4174	Oct-86	3.84	56.7	
Lomanche Peak 1	Nar-74	355	Jan-80	3.84	0	
LOBANCHE MERK I	Dec-76	690	Jan-80	3.08	40	
Losanche Meak I	far-77	690	Jan-81	5.84	37	
Lomanche Feak I	Jun-77	056	Jan-81	J.J9 D.DF	39	
LOBANCHE Yeak 1	far-79	968	389-81 199	2.25	68.8	
LOSERCRE YEAK 1	nec-90	1118	JUN-81	8.20	86	
LOBRNCHE MERK 1	nar-81	1118	348-82 Jun (24	1,23	88	
Company rest 1	JUN-82	1728	120-07	1.UV	91	
LUSANCHE FEAR Z	nar-/+	733	u all TCZ	1.47	Ŷ	

. •

Estimates			imates	C -1		
Unit Name	Date of Estimate	Total Cost	COD	Years to COD	Z Complete	
Comporte Onal 7	800-74	200 200	Jan-87	5 00		
Companying reak 2	920-70 Mar-77	670 490	Ber-97	5.74	4	
Companying Peak 2	1un~77	950	Jan-83	5 59	9,47	
Componence reak 2 Componence Paper 7	Mar-79	850	Jun-83	1.25	76-4	
Comanche Peak 2	Sen-AA	1119	Ner-87	7, 25	50	
Comanche Peak 2	Har-At	1118	Jun-84	3.25	52	
Comanche Peak 2	Jun-82	1720	Jun-85	3.00	55	
Perry 1	Nar-74	617	Jun-79	5.25		
Perry 1	Dec-74	676	Jun-79	4.50	0.5	
Perry 1	Nar-75	676	Jun-80	5.26	0.5	
Perry 1	Jun-75	774	Jun-80	5.01	1.3	
Perry 1	Sep-76	1006	Dec-81	5.25	3.4	
Perry 1	Har-77	1011	Dec-81	4.76	5.4	
Perry 1	Sep-77	988	Dec-81	4.25	13.3	
Perry 1	Dec-78	1159	May-83	4.42	33,2	
Perry 1	Har-79	1185	Nay-83	4.17	37.7	
Perry 1	Jun-79	1187	Hay-83	3.92	40.5	
Perry 1	Jun-80	1701	Nay-84	3.92	59,4	
Perry 1	Mar-81	1710	Hay-84	3.17	70.9	
Perry 1	Sep-81	1884	Nay-84	2.67	78.8	
Perry 1	Mar-83	2643	Hay-85	2.17	83.8	
Perry 2	Mar-74	617	Jun-80	6.26	0	
Perry 2	Dec-74	676	Jun-80	5.50	0.5	
Perry 2	Har-75	676	Apr-82	7.09	0,5	
Perry 2	Jun-75	774	Apr - 82	6.84	1.8	
Perry 2	Sep-76	1006	Jun-83	6.75	3.4	
Perry 2	Har-77	1011	Jun-83	6.25	5.4	
Perry 2	Sep-77	1123	Jun-83	5.75	6.3	
Perry 2	Sep-78	1318	May-85	6.67	20.2	
Perry 2	Mar-79	1367	May-85	6.17	22.5	
Perry 2	Jun-79	1350	May-85	5,92	26.5	
Perry 2	Jun-80	2157	May-88	7.92	46.5	
Perry 2	Nar-81	2179	Hay-88	7.17	52.3	
Perry 2	Jun-81	1808	May-88	6.92	39.8	
Perry 2	far-83	2456	Nay-88	5.1/	38.3	
Kiver Send I	nar-/s	240	UCT-19	6.37	V	
River Send I	Jun-/J	3/8	Feb-80	5.5/	Ű	
River Send I	nar-/4	5/6	5ep-80	8.01 / D/	0	
River send i	JUN-/4	341	380-80 0 01	6.28	0	
Hiver Bend 1	nar-/3	341	565-81 C 01	8.31 1 75	Ų I	
Kiver Bend 1	<u>966-78</u>	734	329-81 Cen. 87	41+/3 1 #1	1	
River Send i Diver Kond (nar-// Dec-77	734	250-03 Cor-03	5.JL 5.75	ل ج	
RIVER BENG 1 Diver Brod 1	UEC=//	11/4	Con-04	ت د د ت ل ۲	ך ב ב	
niver Bend 1	JUN-/8 Con-70	1172	acy-at Anr-az	0.20 1 50	し し し し	
RIVER BENG 1 Diver Bend 1	324-17 ¥ar-DO	11/2	00 - 01 00 - 01	1.JT 1.DT	11 Q	
River Denu 1 Diver Dend 1	nar-ov	1017 7777	anr-at anr-at	7.07	1117 70	
River Bend !	200-01 Con-01	2213 7775	nµr −94 Snr-94	3.48 7 50	30 39 0	
NITE DENU I River Rend 1	Ber-Bi	7445	Por 196	4,00	46.1	
River Rend 1	JEL-01 Con-87	2673 2474	Der-95	3.25	51.4	
River Rend 7	Har-73	344	Sen-At	8.51	0	
rearing and the second		<i><i>w i i</i></i>			•	

۰,

Shearon Harris 1

Shearon Harris 1

Shearon Harris 1

Dec-73

Jun-74

Sep-74

419

513

502

Oct-79

Mar-81

Har-81

5.84

6.75 6.50

Estimates Est. Date of Total Years 2 Unit Name Estimate Cost to COD 683 Complete *** River Bend 2 Mar-74 344 Sep-82 8.51 Q River Bend 2 Jun-74 478 Sep-82 8.26 ٥ River Bend 2 Sep-83 Har-75 478 8.51 0 River Bend 2 Dec-75 4 678 Sep-83 7.76 River Bend 2 Har-77 Sep-85 5 678 8.51 River Bend 2 Dec-77 868 Sep-85 7.75 5 River Bend 2 Har-79 5 868 NA NA Seabrook 1 Sep-68 NA 8ct-74 6.08 0 Ŋ Seabrook 1 Dec-68 120 Oct-74 5.84 Seabrook 1 Mar-69 186 0ct-74 5.59 NA Sep-69 NA Seabrook 1 186 May-75 5.67 Seabrook i Jun-73 Nev-79 Û NA 5.42 ĝ Seabrook 1 Sep-73 946 Nov-79 6.17 Seabrook 1 Har-74 473 Nav-79 5.67 0 Dec-74 Nov-79 4.92 ŋ Seabrook 1 523 Seabrook 1 Har-75 585 Nov-80 5.68 0 Ner-76 5.25 0 Seabrook 1 585 Jun-91 0 Seabrook 1 Jun-76 585 Nov-81 5.42 Seabrook I Dec-76 684 Nov-81 4.92 1 Seabrook 1 Dec-77 1375 Dec-82 5.00 8 13 Seabrook 1 Jun-78 1340 Dec -82 4.50 18.9 Seabrook 1 Nar-79 1497 Apr-83 4.09 Seabrook 1 Jun-79 1294 Apr-83 3.84 26.7 Seabrook 1 Mar-80 Apr-83 36.7 1601 3.08 Seabrook 1 Jun-80 1493 Apr-83 2.83 39.7 Seabrook 1 Mar-81 1708 Feb-84 2.92 47 Seabrook 1 Dec-81 54 1735 Feb-84 2.17 Seabrook 1 Mar-93 2540 73.9 Dec-84 1.76 Seabrook 2 Sep-73 NA Nev-79 6.17 0 0 Seabrook 2 Har -- 74 Nov-79 473 5.67 Seabrook 2 Dec-74 523 Nov-81 6.92 0 Mar-75 Seabrook 2 585 Nov-82 7.68 Q Mar-76 585 Jun-83 7,25 0 Seabrook 2 Seabrook 2 Jun-75 585 Nov-83 7.42 Û Seabrook 2 Dec-76 Nov-83 6.92 ŧ 684 Seabrook 2 Dec-77 825 Dec-84 7.01 1 2 Seabrook 2 Har-78 980 Dec-84 6.76 2.8 Seabrook 2 Mar-79 1084 Feb-85 5.93 Jun-79 1287 Feb-85 5.68 5.3 Seabrook 2 7.28 Seabrook 2 Mar-80 1490 Feb-85 4.93 7.55 Feb-85 Seabrook 2 Jun-80 1558 4.57 8 Seabrook 2 Nar-81 1763 Nay-86 5.17 9.2 Seabrook 2 Dec-81 1825 Hay-86 4.42 19.4 Seabrook 2 Nar-83 2709 Jul-87 4.34 0 Shearon Harris 1 Jun-71 234 Har-77 5.75 Dec-71 5.25 ŋ Shearon Harris 1 247 Har-77 Dec-72 5.25 0 Shearon Harris 1 274 Har-78 0 Shearon Harris 1 Sep-73 331 Mar-78 4.50

0

t

1.7

÷.

j.

1.00

		Est			
	.		****	Est.	
11	Date of	Total	007	Years	
Unit Name	Estimate	LOST	CUD	to CUD	Complete
Shearon Harris 1	Dec-74	513	Har-81	6.25	1.5
Shearon Harris 1	Jun-75	730	Mar-84	8.76	1.7
Shearon Harris 1	Dec-75	901	Mar-84	8.25	1.7
Shearon Harris 1	Dec-76	986	Mar-84	7.25	1.7
Shearon Harris (Dec-77	1039	Nar-84	6.25	1.7
Shearon Harris 1	Dec-79	1208	Mar-84	4.25	18.5
Shearon Harris 1	Jun-80	1208	Nar-85	4.75	32.8
Shearon Harris 1	Dec-80	1629	Sep-85	4.75	37
Shearon Harris 1	Sen-81	1630	Sec-85	4.00	70
Shearon Harris I	Nar-82	1882	Sen-85	3.51	58
Shearon Harris 1	Sep-82	1882	Har-86	3.50	70
Shearon Harris 1	Dec-82	2586	Nar-86	3.25	75
Shearon Harris 2	Jun-71	234	Jun-78	5.75	0
Shearon Harris 2	Dec-71	247	Jun-78	5.25	0
Shearon Harris 2	Dec-72	274	Har - 79	5.25	0
Shearon Harris 2	Sea-73	331	Mar-79	4.50	. 0
Shearon Harris 2	0ec~73	419	Har-80	5.84	0
Shearon Harris 2	Jun-74	513	Jun-82	6.75	1
Shearon Harris 2	Sen-74	502	Jun-82	7.75	•
Shearnn Harris 2	0er-74	513	Jun-82	7.50	
Shearon Harris 7	Jun-75	730	Nar-86	8.76	1.7
Shearon Harris 7	Dec-75	901	Mar-86	8.75	1.7
Shearon Harris 2	Ber-76	986	Nar-86	7.25	1.7
Shearon Harris 2	Dec-77	1039	Mar-86	6.25	1.7
Shearon Harris 2	Dec-79	1208	Nar -87	4.25	3
Shearon Harris 2	Jun-80	1208	Mar-88	4.75	3.7
Shearon Harris 2	Dec-80	1629	Nar-88	4.75	3.7
Shearon Harris 2	Sec-81	1630	Mar-89	4.00	4
Shearon Harris 2	Har-82	1882	Nar-89	3.51	4
Shearon Harris 2	Sep-82	1882	Nar-90	3.50	4
Shearon Harris 2	Dec-82	2023	Har-90	7.25	4
Shorehaa	Mar-67	105	May-73	5.17	. 0
Shorehae	Jun-68	NA	Hav-73	4.92	0
Shoreham	Har-69	182	Hav-75	6.17	0.5
Shorehaa	Mar - 70	218	Hav-75	5.17	0.5
Shorehaa	Dec-71	309	Apr-77	5.34	1.5
Shorehan	Jun-72	309	Hay-77	4.92	1.5
Shorehae	Har-73	309	Jul-77	4.34	1.5
Shorehaa	Dec-73	461	Jul -77	3.58	6
Shorehaa	Har-74	461	Hay-79	4.17	11
Shorehaa	Sep-74	695	Hay-78	3.67	20
Shorehan	Sep-75	695	Sep-78	3.00	43
Shorehan	Dec-75	695	Nay-79	3.42	47
Shorehan	Jun-76	969	Hay-79	2.92	55
Shorehan	Sep-77	1188	Sep-80	3.00	62
Shorehaa	Sep-78	1293	Sep-80	2.00	75
Shorehae	Dec-78	1337	Dec-80	2.00	78
Shorehaa	Jun-79	1581	Nay-81	1.92	80
Shorehas	Jun-80	1213	Feb-83	2.67	85.5
Shorehas	Sep-80	2213	Feb-83	2.42	88
Shoreham	Dec-80	NA	Har-83	2.25	90

-

11

11

-

Estimates					
			1 % 10 % 10 % 10 % 10 % 10 % 10 %	Est.	_
Unit Numa	Date of	lotal	000	Years	<u>,</u>
UNIC NEAP	ESTIMALP	LOST			Complete
Shor eha s	Har-82	2493	Mar-83	1.00	91
Shoreha n	Sep-82	2724	Sep-83	1.00	94.7
Shorehaa	Dec-82	3150	Dec-83	1.00	95.6
St. Lucie 2	Dec-72	340	0ct-78	5.84	0
St. Lucie 2	Mar-73	360	Dec-79	6.76	0
St. Lucie 2	Mar-74	340	Dec-80	6.76	0
St. Lucie 2	Jun-74	360	Bec-79	5.50	0
St. Lucie 2	Dec-74	537	Dec-79	5.00	0
St. Lucie 2	Sep-75	537	Dec-80	5.25	0
St. Lucie 2	Dec-75	620	Dec-80	5.01	0
St. Lucie 2	Sep-76	620	Dec-82	6.25	0.7
St. Lucie 2	Dec-76	850	Dec-82	6.00	0.7
St. Lucie 2	Jun-77	850	Hay-83	5.92	1
St. Lucie 2	Sep-78	845	Hay-83	4.57	13
St. Lucie 2	Dec-78	919	Nay-83	4.42	16.8
St. Lucie 2	Jun-80	1100	Нау-83	2.92	45.1
St. Lucie 2	Jun-82	1270	May-83	0.92	84.1
St. Lucie 2	Sep-82	1420	May-83	0.66	87.7
St. Lucie 2	Mar-83	1420	Jul -83	0.33	97.3
Surry 3	Mar-74	NA	Jun-80	6.26	NA
Surry 3	Jun-74	525	Mar-80	5.75	0
Surry 3	Sep-74	525	Dec-80	6.25	0
Surry 3	Dec-74	525	Hay-83	8.42	0
Surry 3	Mar-75	728	May-83	8.17	0
Surry 3	Jun-75	781	Hay-83	7.92	0
Surry 3	Mar-76	781	Jun-86	10.25	0
Surry 3	Jun-76	1074	Apr-86	9.84	0
Surry 4	Har-74	254	Jun-81	7.25	0
Surry 4	Jun-74	322	Mar-81	6.75	0
Surry 4	Sep-74	322	Dec-81	7.25	0
Surry 4	Dec-74	322	Nay-84	9.42	0
Surry 4	Har-75	506	May-84	9.18	0
Surry 4	Jun-75	511	May-84	8.92	0
Surry 4	Har-76	511	Jun-97	11.26	Û
Surry 4	Jun-76	765	Apr -87	10.84	0
Waterford 3	Sep-70	230	Jan-77	6.34	0
Haterford 3	Sep-71	289	Jan-77	5.34	0
Waterford 3	Sep-72	350	Jan-77	4.34	0.5
Waterford 3	Nar-73	350	0ct-77	4.59	0.5
Waterford 3	Dec-73	445	Jun-79	5.50	0.5
Waterford 3	Jun-74	445	Jun-80	6.01	0.5
Waterford 3	Dec-74	710	Jun-80	5.50	1
Waterford 3	Dec-75	710	Apr-81	5.34	2.87
Waterford 3	Sep-76	815	Apr-81	4.58	15
Waterford 3	Sep-78	1110	Oct-81	3.08	48.8
Waterford 3	Sep-79	1229	Feb-82	2.42	49.5
Waterford 3	Sep-80	1229	Mar-83	2.50	78.2
Waterford 3	Dec-80	1489	Mar-83	2.25	81.9
Waterford 3	Nar-82	1808	Jaj -83	1.33	93.9
Waterford 3	Sep-82	2057	Jan-84	1.33	93.9
Watts Bar I	Dec-70	NA	Aug-76	5.67	0

1

(1

13

•

11

17

		Est			
		~~~~~		Est.	
	Date of	Total		Years	Ÿ.
Unit Name	Estimate	Cost	COD	to COD	Complete
HNP 3	Har-79	1948	Dec-84	5.76	11.2
WNP 3	Sep-79	2256	Dec-84	5.25	16.6
MAN 2	Sep-80	3130	Jun-86	5.75	22.2
MMB 2	Jun-81	3809	Dec-86	5.50	32
Yellow Creek 1	Har-75	929	Apr-83	8.09	0
Yellow Creek 1	Sep-75	929	Jun-83	7.75	0
Yellow Creek 1	Mar-76	929	Jun-83	7.25	0
Yellow Creek 1	Jun-76	929	Har-85	8.75	0
Yellow Creek 1	Sep-77	1048	Har -85	7.50	0
Yellow Creek 1	Jun-78	1048	May-85	6.92	0
Yellow Creek 1	Sep-78	1172	Nay-85	6.67	0
Yellow Creek 1	Sep-79	1445	Nov-85	6.17	7
Yellow Creek 1	Dec-80	1364	Apr-88	7.34	18
Yellow Creek 1	Nar-81	1243	Apr-88	7.09	21
Yellow Creek 1	Sep-81	1938	Oct-90	9.09	28
Yellow Creek 1	Nar-82	NA	NA	NA	33
Yellow Creek 1	Sep-82	1938	Oct-90	8.09	33
Yellow Creek 2	Har-75	929	Apr-84	9.09	HA
Yellow Creek 2	Sep-75	929	Jun-84	8.76	NA
Yellow Creek 2	Jun-76	929	Mar-86	9.75	NA
Yellow Creek 2	Sep-77	1048	Har-86	8.50	
Yellow Creek 2	Jun-78	1048	May-86	7.92	NA
Yellow Creek 2	Sep-78	1172	Mar-86	7.50	
Yellow Creek 2	Sep-79	1445	Apr - 88	8.59	2
Yellow Creek 2	Dec-80	1364	Apr-88	7.34	
Yellow Creek 2	Mar-81	1243	Apr-88	7.09	
Yellow Creek 2	Sep-81	1938	Apr-88	6.59	
Yellow Creek 2	Har -82	NA	Apr-88	6.09	
Yellow Creek 2	Sep-82	1938			
Zimmer 1	Dec-69	199	Jan-75	5.09	0
Zimmer 1	Har-70	210	Jan-75	4,84	NA
Zismer 1	Sep-70	275	Jan-75	4.34	NA
Zimmer 1	Sep-71	288	0ct-76	5.09	0
Zimmer 1	Dec-72	311	Aug-77	4.57	1
Zinner 1	Sep-74	434	Jan-79	4.34	19
Zimmer 1	Dec-75	502	Jan-79	3.09	40.5
Zimmer 1	Sep-76	531	Jan-79	2.33	58.1
Zimmer 1	Sep-77	531	Jul-79	1.83	77.2
Zisser 1	Nar-78	664	Jan-80	1.84	81.3
Zigger 1	Jun-79	850	Jan-81	1,59	92.8
Zisser 1	Mar-80	850	Feb~82	1.92	92.8
Zisser 1	Jun-80	1027	Apr-82	1.83	93.8
Zimmer 1	Dec-81	1258	Jan-83	1.08	96.8
Zimmer 1	Har -82	1258	Jun-83	1.25	97.5
Ziamer i	Jun-82	1258	Dec-83	1.50	97.96
Zisser 1	Sep-82	1667	Jan-84	1.33	98.25
Zimmer 1	Dec-82	1667	NA	NA	98.3

B-33

	Date of	Total		Years	ĩ
Unit Nase	Estimate	Cost	COD	to COD	Complete
Callamay 2	Jun-74	805	Apr - 83	8.84	0
Callaway 2	Dec-74	863	Apr-83	8.34	0
Callaway 2	Har-76	739	Apr-83	7.09	0.2
Callaway 2	Dec-76	1297	Apr-87	10.34	0.4
Callaway 2	Jun-77	1297	Apr-87	9.84	0.4
Callamay 2	Bec-77	1288	Apr-87	9.34	0.4
Callamay 2	Sep-78	1306	Apr-87	8.59	0.4
Callamay 2	Nar-80	1609	Apr-87	7.09	0.7
Callaway 2	Jun-80	1609	Jun-88	8.01	0.7
Callaway 2	Dec-80	1688	Apr-88	7.34	0.7
Callaway 2	Har-81	1688	Apr -90	9.09	0.7

4

÷

				Est.	
	Date of	Total		Years	1
Unit Name	Estimate	Cost	003	to COD	Complete
			N 70		***************************************
Ballly Nuclear 1	nar-5/	112	96C-/2	3./8	
Ballly Nuclear 1	nar-/u	161	Fe0-/5	2-22	20
Bailly Nuclear 1	Sep-/0	150	Feb-/6	5.42	NH
Bailly Muclear 1	Jun-72	244	Jun-77	5.00	Ű
Bailly Nuclear 1	Sep-74	447	Jun-77	2.75	0.5
Bailly Nuclear 1	Sep-75	447	Jun-95	19.76	0.5
Bailly Nuclear 1	Har-76	447	Jun-85	9.26	0.5
Bailly Nuclear 1	Sep-76	674	Jun-85	8.75	0.5
Bailly Nuclear 1	Dec-76	674	Nov-82	5.92	0.5
Bailly Muclear 1	Nar-77	705	Xav-82	5.67	0,5
Bailly Nuclear 1	Sep-77	705	Dec-82	5.25	0.5
Bailly Nuclear 1	Dec-77	705	Jun-84	6.50	0.5
Bailly Nuclear 1	Har-78	850	Jun-84	6.26	0.5
Bailly Nuclear 1	Dec-78	850	Dec-84	6.01	0.5
Bailly Nuclear 1	Sep-79	1100	Jun-87	7.75	0.5
Bailly Nuclear 1	Dec-80	1100	Jun-89	8.50	0.5
Bailly Nuclear 1	Jun-91	1815	Jun-89	8.01	0.5
Cherokee 1	Sep-73	NA	Jan-81	7.34	0
Cherokee 1	Nar-74	NA	Sep-82	8.51	0
Cherokee 1	Jun-74	NA	Jan-82	7.59	0
Cherokee l	Sep-74	248	Jan-84	9.34	NA
Cherokee 1	Dec-74	262	Jan-84	9.09	0
Cherokee 1	Dec-75	262	Jan-85	9.09	0
Cherokee 1	Mar-76	262	Jan-84	7.84	0
Cherokee 1	Mar-77	336	Jan-84	6.84	0.5
Cherokee 1	0ec-77	336	Jan-85	7.09	1
Cherokee 1	Har-78	392	Jan-85	6.84	i
Cherokee 1	Kar-79	402	Jan-85	5.84	4
Cherokee I	Jun-79	402	Jan-87	7.59	5
Cherokee 1	Nar-80	402	Jan-90	9.84	15
Cherokee i	Sep-80	729	Jan-90	9.34	- 17
Cherokee 2	Har-74	NA	Sep-83	9.51	0
Cherokee 2	Jun-74	NA	Apr-83	8.84	0
Cherakee 2	Sep-74	248	Jan-96	11.34	0
Cherokee 2	Dec-74	262	Jan-86	11.09	0
Cherokee 2	Dec-75	262	Jan-87	11.09	0
Cherokee 2	Har-76	262	Jan-86	9.84	0
Cherokee 2	Har-77	336	Jul -86	9.34	0.5
Cherokee 2	Dec-77	336	Jan-87	9.09	1
Cherokee 2	Har-78	392	Jan-87	8.84	2
Cherokee 2	Har-79	402	Jan-87	7.84	4
Cherokee 2	Jun-79	402	Jan-89	9.59	5
Cherokee 2	Nar-80	402	Jan-92	11.84	1
Cherokee 2	Sep-80	729	Jan-93	12.34	1
Cherokee 3	Nar-74	NA	Sep-84	10,51	0
Cherokee 3	Sep-74	248	Jan-88	13.34	0
Cherokee 3	Dec-74	262	Jan-88	13.09	0
Cherokee 3	Dec-75	262	Jan-89	13.10	0
Cherokee 3	Har-76	262	Jan-88	11.84	0
Cherokee 3	Dec-76	262	Jun-89	12.51	0.5
Cherokee 3	Har-77	336	Jan-89	11.85	0.5

. •

.,

## Canceled Non-Bechtel Plants

				Est.	
Hait Hann	Date of	Total	000	Years	2 ()
UNIL ABRE	25119816	485t			LCapiete
Cherokee 3	Mar - 78	392	Jan-89	10.85	1
Cherokee 3	Har-79	402	Jan-89	9.85	4
Cherokee 3	Jun-79	402	Jan-91	11.59	4
Cherokee 3	Mar-80	402	Jan-94	13.85	1
Cherokee 3	Sep-80	729	Jan-95	14.34	1
Forked River 1	Nar-75	694	Nav-82	7.17	0.5
Forked River 1	Dec-76	894	May-83	6.42	0.5
Forked River 1	Jun-78	894	Dec-83	5.50	1
Forked River 1	Dec-78	1150	Dec-83	5.00	4.1
Hartsville 8-1	Mar-73	379	Jun-81	8.25	NA
Hartsville 8-1	Dec-74	601	Jun-81	6.50	
Hartsville B-1	Sep-75	601	Jun-82	6.75	NA
Hartsville B-1	Jun-76	601	Aug-83	7.17	NA
Hartsville 8-1	Sep-76	602	Aug-83	4.92	,
Hartsville 8-1	Jun-77	602	Dec-83	6.50	АК
Hartsville B-1	Sea-77	854	Dec-83	4.25	
Hartsville 8-1	Sep-79	1419	Jun-89	9.76	. 15
Hartsville 8-2	Har-73	379	Jun-82	9.26	0
Hartsville 8-2	Jun-74	378	Jun-82	8.01	NA
Hartsville 8-7	Sen-74	379	Jun-87	7.75	٨٨
Hartsville 8-2	Sen-75	601	Jun-83	7.75	NA
Hartsville B-7	Jun-74	601	Aug-R4	8.17	N۵
Hartsville B-2	Jun-77	607	Sec-84	7.51	ΔN
Hartsville 8-7	Sen-77	854	Npr-A4	7.25	
Hartsville 8-2	Sen-79	1419	Jun-90	10.76	F,
Shearon Harris 3	Jun-71	774	Har-77	5 75	0
Shearon Harris 3	Sen-71	246	Har-77	5.50	ů
Shearon Harris 3	Dec-77	274	Har-78	5.25	ů.
Shearon Harris 3	Sen-73	331	Nar - 78	4.50	ů.
Shearon Harris 3	Dec-73	410	8ct-79	5.84	0
Shearon Harris 3	Jun-74	513	Mar-81	6.75	1
Shearon Harris 3	Dec-77	1039	Har-90	12.25	0.5
Shearon Harris 3	Der-79	1208	Nar-91	11.25	0.5
Shearon Harris 3	Jun-80	1208	Har-94	13.78	0.5
Shearon Harris 4	Bec -77	1039	Nar - 88	10.25	0.5
Shearon Harris 4	Dec-79	1208	Nar-99	9.25	0.5
Shearon Harris 4	Jun-80	1208	Har-92	11.76	0.5
North Anna 3	Har-73	355	Anr-77	4.09	0.5
North Anna 3	Sen-73	355	Npr -77	4, 25	2
North Anna 3	Ner-73	389	Der-77	4.00	2
North Anna 3	Har-71	396	Har-78	4.00	3.3
North Anna 3	Jun-74	394	Nec-78	4.50	3.6
North Anna 3	Ber-74	437	Jun-80	5.50	3.6
North Anna 3	Har-75	512	Nec-90	5.74	4.9
North Anna 3	Nor-75	512	Anr-Al	5.34	4.9
North Anna 7	Nor-76	453	Anr-RI	5 / 9	4 4 Q
North Anna 3	Har-77	819 819	Anr-87	5.09	4.9 1.9
North Anna 3	San-77	819	Mav-87	1.47	7
North Anna 3	Nor-77	818	Art-A3	5.94	7
North Anna 3	Nor-79	1017	8ct-93	5_54	7
North Anna 3	Nar-79	1017	Anr-94	7.09	7
erme has estarted. W	11641 2.4				1

#### Canceled Non-Bechtel Plants

Ĵ.

				Est.	
11 1 1 N	Date of	Total	645	Years	<u>y</u> Paarlais
Unit Name	Estimate	Cost	CUD	to COD	
North Anna 3	Sep-79	1428	Apr-86	6.59	7
North Anna 3	Dec-80	NA	Oct-89	8.84	7
North Anna 3	Mar-81	2175	Oct-89	8.59	7
North Anna 3	Dec-82	4053	Oct-89	6.84	8
North Anna 4	Mar -73	262	Apr-78	5.09	0.5
North Anna 4	Sed-73	252	Jun-78	4.75	2
North Anna 4	Dec-73	268	Jun-78	4.50	2
North Anna 4	Mar-74	281	Dec-79	5.76	1.5
North Anna 4	Jun-74	281	Har-79	4.75	1.6
North Anna 4	Sep-74	281	Dec-79	5.25	1.7
North Anna 4	Dec-74	295	Dec-80	6.01	1.7
North Anna 4	Mar-75	347	Jul-81	6.34	2
North Anna 4	Dec-75	347	Nov-81	5.92	1.6
North Anna 4	Mar-76	423	Nav-81	5.67	1.6
North Anna 4	Mar-77	568	Hay-83	6.17	3.5
North Anna 4	Sep-77	568	Jun-83	5.75	3.7
North Anna 4	Dec-77	568	Seg-84	6.76	3.7
North Anna 4	Mar-78	660	Sep-84	6.51	3.7
North Anna 4	Har-79	660	Apr-87	8.09	3.7
North Anna 4	Seo-79	956	Apr-87	7.59	3.7
Phinns Hend 1	Har-75	780	Apr-82	7.09	0
Phinns Rend 1	Jun-75	780	Apr-82	6.84	0
Phinns Rend 1	Seo-75	780	Har-83	7.50	0
Phinos Bend 1	Dec-75	780	Mar-83	7.25	0
Phinos Bend 1	Jun-76	780	Apr-84	7.84	0
Phicos Bend 1	Sep-77	876	Apr-84	6.59	0
Phinos Bend 1	Dec-77	876	Aug-84	6.67	0
Phinos Bend 1	Sep-78	872	Aug-84	5,92	1
Phinos Bend 1	Sep-79	1440	Har - 87	7.50	7
Phicos Bend 1	Dec-80	1440	Feb-89	8.18	14
Phiops Bend 1	Mar-81	2685	Feb-89	7.93	20
Phinos Send 1	Sep-81	2685	Apr-94	12.59	25
Phigos Bend 1	Dec-82	NA	Apr-94	11.34	27
Phicos Bend 2	Mar-75	780	Apr-83	8.09	NA
Phiops Bend 2	Sep-75	780	Kar-84	8.50	0
Phiops Bend 2	Jun-76	780	Apr-85	8.84	NA
Phiops Bend 2	Sep-77	876	Apr-85		0
Phipps Bend 2	Dec-77	876	Aug-85	7.67	0
Phipps Bend 2	Sep-78	872	Aug~85		Ĵ
Phipps Bend 2	Sep-79	1440	Aug-89	9.92	1
Phipps Bend 2	Jun-80	1440	May-94	13.92	4
Phicos Bend 2	Dec-80	1440	Aug-89	8.57	NA
Phions Bend 2	Dec-82	NA	NA	NA	5
WNP 4	Seo-74	NA	Jun-82	7.75	NA
NNP 4	Dec-74	NA	Har-82	7.25	0
WNP 4	Jun-75	436	Mar-82	6.75	0
HNP 4	Jun-76	1095	Nar -82	5.75	0.5
WNP 4	Dec-76	1095	Har-83	6.25	0.8
WNP 4	Mar-77	1003	Har-83	6.00	1.3
WNP 4	Jun-77	1232	Mar-83	5.75	1.6
KNP 4	Dec-77	1232	Jun-84	6.50	2.8
			· · · ·		

6----

A street

I

		Estimates				
Unit Name	Date of Estigate	Total Cost	COD	Years to COD	۲ Complete	
WNP 4	Mar-78	1610	Jun-84	6.26	3.2	
WNP 4	Sep-78	1982	Jun-85	6.75	7.6	
WNP 4	Har-79	2302	Jun-85	6.26	11.5	
WNP 4	Dec-79	3348	Jun-86	6.50	14.4	
HNP 4	Har-80	3086	Jun-86	6.25	14.5	
WNP 4	Jun-81	4251	Jun-87	5.00	26.5	
HNP 5	Har-74	NA	Har-83	9.01	0	
WNP 5	Jun-75	439	Mar-83	7.75	0	
WNP 5	Har-76	1271	Apr-84	8.09	0	
HNP 5	Sep-76	1271	Nov-84	8,17	0	
HNP 5	Dec-76	1189	Jan-85	8.09	0	
WNP 5	Har-77	1470	Feb-85	7.93	0	
HNP 5	Sep-77	1470	Mar-85	7.50	0	
WNP 5	Dec-77	1470	Jul -85	7.59	0	
WNP 5	Har-78	1887	Jul -85	7.34	0	
WNP 5	Har-79	2224	Jun-86	7.26	1.8	
WHP 5	Sep-79	2493	Jun-86	6.75	6.4	
WNP 5	Jun-80	3705	Jun-87	7.00	6.7	
WNP 5	Sep-80	3420	Jun-87	6.75	8.2	
WNP 5	Jun-81	4845	Dec-87	6.50	14.3	

# APPENDIX C

EXCERPT OF TESTIMONY BY PAUL CHERNICK

in M.D.P.U. 19494

April 1, 1979

ANALYSIS AND INFERENCE, INC. SRESEARCH AND CONSULTING

_____

10 POST OFFICE SQUARE, SUITE 970 - BOSTON, MASSACHUSETTS 02109 - (617)542-0611

COMMONWEALTH OF MASSACHUSETTS DEPARTMENT OF PUBLIC UTILITIES

Re: Boston Edison Company's ) Construction Program and ) Capacity Needs, ) D.P.U, 19494 )

1. + +

ميسر قور

> JOINT TESTIMONY OF PAUL L. CHERNICK AND SUSAN C. GELLER ON BEHALF: OF THE ATTORNEY GENERAL



 $\frac{1}{2}$ 



1

FRANCIS X. BELLOTTI Attorney General

By: Michael B. Meyer Assistant Attorney General Utilities Division Public Protection Bureau One Ashburton Place Boston, Mass. 02108 (617) 727-9714

#### V. CENTRAL MAINE POWER

Q: What materials did you review in preparing this portion of your testimony?

A: We were able to obtain some of Central Maine Power's (CMP) responses to Data Requests from Louise McCarren in a CMP rate case before the Maine Public Utilities Commission, docketed as FC #2322. Apparently, there was no official forecast document, but one of the responses is to the question

> "Please state the methodology used, including all the variables considered. . . (and) a detailed account of the statistical techniques used to assure the accuracy of the growth projections. . ." (IVLM-7)

The responses to this question and follow-up questions appear to present CMP's best explanation of its methodology. The forecast peaks coincide with those in the 1978 NEPOOL Load and Capacity Report.

Q: Please describe the CMP forecast methodology?

A: The sales forecast is composed of Residential, Commercial, Industrial, and Other Sales. Sales in each category are then allocated between months. Losses and Company Use are added to each month's sales to determine territory output, which is multiplied by a monthly load factor to determine monthly peak.
Q: Do you have any general comments on the sales forecast?

A:

Yes. Considering the size and forecast growth rate of CMP, the sales forecast is wholly inadequate. As CMP stated:

> In summary, the basis for the forecast is a computer program which produces a forecast of monthly sales, net for load energy and peak loads. The key variables input to the program are as follows:

 Residential nonseasonal customers;
Nonseasonal subclass saturation rates;
Residential seasonal customers;
Residential customer average usage by subclass;
Commercial sales growth rate;
Industrial sales growth rate;
Other sales growth rate;
Lost and Unaccounted For growth rate;
Other Company Use Factors; and
Monthly Load Factors.

In other words, CMP is only really interested in what happens after the sales forecast is developed. The sales forecast shows the result of this neglect. CMP indicates that "Ordinary least square (sic) regression analysis is the statistical technique which is put to greatest use." This technique is obviously inadequate for most purposes: in any case, we cannot determine any situations in which CMP actually used linear regression. The lack of detail and disaggregation in the various classes and the absence of a formal forecast document are also indicative of CMP's cavalier attitude towards forecasting.

-64-

It is also interesting that Dr. Joel Brainard of the Brookhaven National Laboratory reviewed CMP's forecast for the rate case mentioned above and testified that ". . . if you use the company's data and their methodology, you will not get the numbers they claim you'll get. . . The error in some cases is quite large." Our review confirmed this finding in several cases.

Q: Please describe the Residential forecast methodology?

A: The Residential class is divided into five subclasses: general, waterheating, spaceheating, all-electric, and seasonal. A Maine population projection was multipled by CMP's fraction of state population and divided by a projection of household size to yield households in CMP's territory. Since CMP apparently uses data on consumption per dwelling, rather than consumption per customer ( a peculiar approach, which must cause some data problems), they then presumably scaled the household count upward to include vacant units. Unfortunately, CMP says they "divided by one plus. . . the vacancy rate", when they should have intended to divide by one minus the vacancy rate. It is not clear what in fact they did.

CMP then seems to have determined the number of new "customers" (actually dwellings, since some 11% were assumed to be vacant) in each year and to have apportioned them between the four non-seasonal subclasses by use of

-65-

utterly undocumented, and very high, penetration rates for electric space and waterheating. In addition, the seasonal customer class is increased by 300 customers annually.

Each subclass "customer" number is then multiplied by an average consumption per dwelling. These average consumptions must capture the effects of dwelling type, dwelling size, family size, appliance saturations (other than space and water heating), average appliance consumption, efficiency standards, retrofitting of insulation, woodburning, building design, and electricity price. None of these factors was explicitly considered. In fact, average consumption for non-seasonal spaceheating and all-electric customers was simply projected to increase at 140 KWH annually, presumably based on some data from the late 1960's, when average consumption was rising. Since 1972, average consumption for these two classes has actually fallen by an average of 718 KWH annually; a linear time trend on this period would predict declines of 588 KWH annually. Of course, no historical trend can capture future appliance efficiency and the like.

Similarly, General Residential customers' average consumption was assumed to increase at an amazing 200 KWH annually, waterheating customers at 190 KWH annually, and seasonal customers at 100 KWH per year. While we do not have historical data for these subclasses, it is unlikely

-66-

that appliance penetrations could counter-balance greater appliance efficiency, insulation retrofit on water heaters and pipes, and all the other conservation measures available to residential customers, so as to produce these large increases. Of course, since CMP has no saturation data for most appliances, it would be difficult to model these effects in detail.

Q: Please describe the commercial methodology?

-Ú

ų,

A :

Based on an analysis of historical data, CMP claims that 3.4% annual long-term growth in Maine nonmanufacturing employment is "appropriate". We have not seen the data they used; given their performance in other sectors, CMP's credibility in determining "appropriate" growth is not high.

CMP then multiplied Maine nonmanufacturing employment by KWH per employee to yield Maine commercial sales. The KWH per employee figure is said to be based on a time trend; CMP provides no details, as usual. In any case, this factor increases at 250 KWH/employee/year in most forecast years, and occasionally at 240 KWH/year.

Even if CMP's projection of sales per employee is based on a perceived trend, it is apt to be incorrect for three important reasons. First of all, commercial sales and nonmanufacturing employment have not historically referred to the same establishments. CMP apparently used sales to certain rate classes as a proxy for commercial

-67-

sales until 1975, at which time they reclassified sales on the basis of SIC. This reclassification may have moved many large commercial customers (e.g., shopping centers) into the commercial class for the first time, dramatically inflating the sales-to-employee ratio and distorting historic trends, which may have already been affected by classification problems. Secondly, no correction has been made in the historical trend to reflect higher electric prices, equipment efficiency, or improved building design. Indeed, given CMP's predilections, the forecast growth may exceed historic rates. Third, CMP does not disaggregate commercial sales in any way, either in historic data or in the forecast.

CMP determined its share of Maine commercial sales by use of the equation:

GWHC = (.801 * CWHM) - 45.2where GWHC is CMP commercial sales in GWH

GWHM is Maine commercial sales in GWH Obviously, this formulation will increase CMP's share of Maine sales over time. We have no information as to how CMP chose this peculiar function, nor from what data (if any) it is derived, nor whether the other Maine utilities are projecting corresponding decreases in their share of total commercial sales. Finally, CMP's methodology does not seem to produce its commercial forecast, perhaps because of further reclassifications in 1978. But even the growth rates are not taken from the methodology, CMP holds growth constant at 7.0% from 1983 to 1990, when the methodology should produce steadily declining growth, due to the linear growth in sales/employee and the asymptotic nature of the CMP fraction equation. CMP's methodology yields a 6.4% growth rate in 1990, for example, rather than the 7.0% CMP uses. In fact, it appears that CMP used a higher growth rate than the methodology would produce <u>in every forecast year</u>. Please describe the industrial sales forecast methodology?

0:

A :

Industrial sales are forecast as a whole, without any disaggregation by industrial type, such as SIC code. CMP forecasts 17.7% growth in industrial sales in 1977, followed by a constant (if sloppily calculated) 4.0% growth thereafter, until 1990. CMP claims that "the industrial sales growth rate is based on the long term trend exhibited between 1965 and 1975." This long term trend was actually 3.0% annual growth. In the longer term, 1965-1977, CMP industrial sales grew at 2.6%, which slowed to 2.5% from 1969 to 1977, to 2.1% since 1972, and 1.0% since 1974. How a 17.7% jump and long term 4.0% growth can be "based on" these historic trends is not at all clear. No effort is made to incorporate electricity price or national or local industrial output into the forecast.

-69-

Q: Please describe the Other sales forecast?

Other sales is projected to grow at 5% annually from Α: 1978 to 1990. This growth appears to be chosen to approximate the overall forecast growth in the major classes. However, these sales have historically fluctuated with no real pattern: since 1966, other sales have grown at a compound rate of 1.6% annually, but they have fallen since 1973 at -5.5%. Almost any moderate growth rate, positive or negative, could be supported in some fashion by this erratic record, but not one as high as 5%. Zero growth might be the most reasonable assumption. Does this conclude your testimony on the CMP forecast? Q: A: Yes.

-70-

## APPENDIX D

· .

1

EXCERPT OF TESTIMONY BY PAUL CHERNICK

in N.R.C. Docket No. 50-471

.

June 29, 1979

ANALYSIS AND INFERENCE, INC. SORESEARCH AND CONSULTING

10 POST OFFICE SQUARE, SUITE 970 ~ BOSTON, MASSACHUSETTS 02109 ~(617)542-0611

•

UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION

BEFORE THE ATOMIC SAFETY AND LICENSING BOARD

In the Matter of BOSTON EDISON COMPANY, et al., Pilgrim Nuclear Generating Station, Unit 2

# 0

1 .

Docket No. 50-471

JOINT TESTIMONY OF PAUL L. CHERNICK AND SUSAN C. GELLER ON BEHALF OF THE COMMONWEALTH OF MASSACHUSETTS

COMMONWEALTH OF MASSACHUSETTS

BY: FRANCIS X. BELLOTTI ATTORNEY GENERAL

> Michael B. Meyer Assistant Attorney General Utilities Division Public Protection Bureau Office of the Massachusetts Attorney General One Ashburton Place, 19th Floor Boston, Massachusetts 02108 (617) 727-9714

June 29, 1979

## II. THE NEPOOL MODEL

Q: What materials have you reviewed in preparing this portion of your testimony?

A: Until recently, we had available only the <u>Report on a</u> <u>Model for Long-Range Forecasting of Electric Energy and</u> <u>Demand to the New England Power Pool by NEPOOL Load</u> <u>Forecasting Task Force and Battelle-Columbus</u> (6/30/77), hereinafter referred to as "the Report". Our requests for further information, both through the EUA forecast case (EFSC 78-33) and through an ongoing investigation into Boston Edison's construction program (DPU 19494/Phase II) had been unsuccessful.

In the latter case, we recently received, through cross-examination of Mr. Bourcier, copies of partial output from the runs of the model which produced the NEPOOL forecast, forty five "Model Documentations" which revise and supplement the Report, and other information which Mr. Bourcier supplied orally. As of the time this testimony was written, no response to our discovery on BECO in this case had been received.

- Q: Do you have any special reservations about reviewing the NEPCOL model based on the documentation available to you?
- A: Yes. Both the Report and the Documentation raise almost as many questions as they answer, due to the nature and style of the documents:

-15-

Many relationships are estimated from 1. data which are not provided. In many cases, the exclusion of the data is understandable, considering its bulk, but makes discovery even more important than in relatively self-contained forecasts.

- 2. Selected functional forms are presented, without the rejected alternatives, a discussion of the criteria for choice, or goodness-of-fit measures.
- Some important inputs are user 3. specified, and are therefore not presented in the Report.
- At this writing, only partial results 4. of the Model are available. Such important intermediate results as sales by end use, appliance penetrations, appliance saturations, labor force participation rates, and value added have not been reported.
- 5. Several important sources on which the model is based are unpublished NEPOOL/Battelle products, testimony in other cases, comments made in panel discussions at industry conferences, and the like. Considering the sophistication of the NEPOOL model, these omissions prevent any thorough review of the model.

Q: Please describe the structure of the model.

Conceptually, the NEPOOL model is divided into seven A :

major sections:

- 1. The demographic submodule, in which population, migration, and labor force participation are determined;
- The employment submodule, in which 2. employment by industry type is determined;

- 3. An interface between the economic/demographic module and the power module, which sets household number, housing type mix, and income distribution;
- The residential power submodule, which determines appliance saturations and average use patterns;
- 5. The industrial power submodule which determines value added and KWH/ value added for each SIC;
- The commercial power submodule, which determines base load consumption per employee, saturation of electric space heating and cooling, and weather sensitive load for each commercial category; and
- 7. The miscellaneous power submodule, which forecasts such uses as street lighting, agriculture, mining, railroads, utility use, and losses.

We will attempt to review briefly a sampling of the deficiencies in each section.

- Q: Please discuss the deficiencies in the demographic submodule.
- A: The migration equations have some serious flaws. Migration rates are postulated as a linear function of the differential between local and national unemployment. Rather than estimating these relationships over time for each state, NEPOOL estimates <u>across</u> the New England states for the period 1960 to 1970. What is really being measured, then, is the attractiveness of Massachusetts, or Vermont, relative to the rest of the country in the 1960's,

-17-

rather than the effects of changing unemployment rates. This "cross-sectional fallacy" can be quite dangerous; Figure I illustrates how even the sign of the cross-sectional relationship can be different from that of the relationship which holds for each state. Furthermore, due to the nature of the estimation procedure, neither national unemployment nor time-dependent changes can directly effect the migration rate.

Other problems appear in the migration section. NEPCOL admits that wages influence migration, but wages do not appear as a variable in forecasting migration. Similarly, NEPOOL recognizes that schooling influences migration, yet no attempt was made to identify the impact of expansion of higher education in Massachusetts in the 1960's, which certainly attracted more out of state students in 1970 than a decade earlier. No significance tests are offered for the equations; it is not clear that the relations are not simply artifacts of chance. The statistical tests which are provided by NEPOOL indicate that much of the variation in the data is not explained by the equations. Finally, NEPOOL corrects the equation for young males to take out the effects of the military draft in 1970; it does not appear that the countervailing effect of either the Cold War military activity of 1960 or the function of colleges for draft avoidance in 1970 was similarly factored out.

-18-



-19-

The sensitivity analyses performed on the migration equations are ambiguously explained in the Report. It is unclear whether the slope coefficients were changed in absolute value or actual level; whether the intercepts, the means, or some other point was held constant when the slopes were increased; and what NEPOOL actually did when it "dropped the error term". In any case, the equations have been revised but no new sensitivity tests were reported. Do similar errors occur in the estimation of labor force participation rates?

Q:

A :

This rate (LFPR) is estimated for each age/sex Yes. group as a linear function of jobs per capita and/or of time. Even though data from the years 1960 and 1970 are used, the presence of the time variable probably results in the jobs per capita variable capturing primarily differences between states, just as the migration equations do. For various cohorts, one or both variables are omitted; no reasons are offered for these differences. Finally, having gone to the trouble of estimating some approximation of New England labor forces participation functions, NEPOOL tacks on two time trends based on national projections. It seems that the application of these trends either double counts the effects NEPOOL has attempted to measure directly or eliminates the need for the direct estimation process. In short, it is impossible

-20-

to determine from the documentation how NEPOOL'S LFPR equations were really derived and whether that derivation is reasonable.

Q: How is employment forecasted by NEPOOL?

A:

Non-manufacturing employment is forecast as a ratio to state population. Manufacturing employment is forecasted by multiplying exogenous forecasts of national employment growth rates (by SIC) by a "cost index multiplier" to account for differences in local and national costs.

Q: Is the non-manufacturing employment growth forecast reasonable?

Α:

No. It has two serious problems. First, NEPOOL assumes that all non-manufacturing employment serves local population; in fact, much non-manufacturing employment may be serving businesses and/or serving customers outside the state (e.g., Massachusetts' hospitals and universities, Connecticut's insurance firms, and considerable portions of various states' agriculture and tourism). Second, NEPOOL is apparently projecting non-manufacturing employment per capita in each sector in each state to grow at national rates, despite historic tendencies, in several cases, to grow more slowly and fall more rapidly than the national average. Unfortunately, NEPOOL's documentation on this point is so vague that it is not possible to determine exactly how this projection is performed.

-21-

- Q: What comments do you have on the cost index multiplier for manufacturing employment?
- A: First, NEPOOL's equations imply the relationships listed in Table I <u>infra</u>. For example, if national growth is negative and costs are much lower locally, then the faster national employment <u>falls</u>, the faster local employment <u>grows</u>. This relationship is definitely counterintuitive.

In addition, NEPOOL provides no documentation for the three complex cost index multiplier curves which it uses for various states. The multipliers often produce <u>worse</u> backcasts than the national growth rates alone.

Q: Are the cost comparisons on which the cost index multipliers operate performed in a reasonable manner?

A :

Each SIC's costs are divided into fractions for labor, transportation, taxes, energy and others. For each fraction, a local-to-national cost ratio is derived. Problems arise in all five areas.

With respect to labor costs (RLC), the major problems . arise with respect to an equation which adjusts RLC as a function of local

-22-

## TABLE I

Relationship between Local Growth and National Growth if

Local to National Cost Ratio	<u>NG O</u>	<u>NG O</u>
over 1.08	LG = .1NG	LG = 2.1NG
1.07 to 1.08	LG = O	LG = 2NG
.92 to .93	LG = 2NG	LG = O
under .92	LG = 2.1NG	LG =1NG

and national unemployment rates. There is no documentation of this equation, and NEPCOL has apparently never tested it. Yet this equation will adjust labor costs downward in the forecast period. Furthermore, NEPCOL adjusts RLC more rapidly when RLC  $\langle 1 \rangle$  (local costs are cheaper than national costs) than when RLC  $\rangle 1$ . NEPCOL's reasoning on this matter is opaque.

With respect to transportation costs, the major problems concern measurement of distances. While the measurements of distance from New England to other regions are somewhat crude, the real problem arises within New England. NEPOOL assumes that all shipments from any part of a state originate at the state employment centroid and terminate at the New England employment centroid. This will tend to underestimate transportation costs within New England, as illustrated in Figure II, <u>infra</u>.

Q: Are taxes measured better than transportation costs?

A:

No, they are very poorly measured. Utility taxes, which probably affect few industrial customers directly, are included in the measure, as are insurance taxes, only a portion of which are paid by manufacturing firms. But real estate taxes, which may be very important costs, are excluded. It may not be possible to accurately measure tax costs to business; it is not clear that a bad measure is more useful than none.

-24-



-25-

Q: Are there any further problems in the economic submodule?

A:

There is one potentially quite serious generic problem. NEPOOL does not seem to have maintained consistency of the internal forecast with the exogenous forecast which drives it. It is not clear that projections of LFPR, or man-hours per employee, or productivity, or wage rates, or energy costs in the NEPOOL model are compatible with the values Wharton Economic Forecasting Associates uses. For example, suppose that WEFA is projecting that low rates of labor productivity growth, shorter weeks, low wages, and high energy costs will generate large employment. If NEPOOL then takes that large employment growth and assumes higher wages, cheaper energy, longer weeks, and higher productivity, the demand forecast will be directly inflated by the lack of consistency.

In fact, in some cases NEPOOL's forecasting may be internally inconsistent, as well. For the manufacturing employment forecast, wage rates are projected to fall compared to national levels, while for determining personal income (and residential electric use) they are projected to rise at historic national rates.

- Q: Are appliance saturations projected in a reasonable manner in the residential power submodule?
- A: Most appliance saturations are forecast as functions of household income; this is generally a good approach,

although family size probably should be included for several appliances. However, the saturation functions suffer from several errors:

ŝ

- No distinction is drawn between new market penetration and old market conversions or acquisitions; this may be a serious deficiency for central air conditioning and electric ranges.
- 2. An income relation is improperly used as though it were an appliance price relation.
- 3. The effects of electric price and service costs on effective appliance price are neglected.
- 4. NEPOOL assumes that real appliance prices will fall rapidly although the most recent data available indicates that real prices are rising.
- 5. Prices of electricity and alternative fuels are not incorporated in any way; increasing electric costs may counteract the effects of the falling real price of appliances which NEPOOL incorporates.
- 6. The saturation functions are applied to appliances for which the measured price and/or income are not particularly relevant to purchase decisions.

For example, electric penetration of the range and dryer markets will primarily respond to relative fuel prices and efficiencies, to space heating fuel, and, for ranges, to performance. Income should not affect fuel choice, and if falling appliance price has any effect, it would be to reduce the slight capital cost advantage some 'electric versions enjoy over their gas counterparts. Furthermore, NEPOOL assumes, without any supporting data or analysis, and often in contradiction to available evidence, very high penetrations of dishwashers and room air conditioners in new construction; increases in total refrigerators saturation; accelerated increases in the ratio of frost-free to standard refrigerators; and constant shares of controlled waterheating.

Electric space heating penetrations are forecast by use of an equation that incorporates electric and oil heating capital and operating costs, promotion by the utility, fraction of housing that is single family, and degree of urbanization. Unfortunately, NEPOOL's model incorrectly measures fuel costs (both in the estimation of the model and in forecasting) and some capital costs, inadequately models the advantage of gas heat over oil heat, explains very little of the observed variation in data, ignores demolitions (which inflate penetration rates) and is improperly adjusted by state. For example, the equation was estimated on the basis of data from thirty-two utilities around the country; since heat pumps are very popular in some warm areas, NEPCOL's cost comparisons may be seriously tainted. Problems are also evident in the estimate of alternative fuel cost: gas is not even considered as an alternative for New England, and new

-29-

furnace efficiency is assumed to be constant from 1966 on. NEPOOL also gives no hint of how the variables (most importantly, electric price) are forecast; in the case of electric price, the effect of rate reform and elimination of promotional rates should also be considered.

Q: Are NEPOOL's projections of average annual use per appliance reasonable?

A: Curiously, the Report and Documentations do not provide this information. NEPOOL provides only "connected load" for each appliance, which is multiplied by a fraction, F (which varies over the days of the week, the seasons, the time of day, between appliances, and in some cases with temperature) to determine hourly demand. The annual sum of these F's then determines use per appliance. Even in the absence of this information, however, several shortcomings are evident.

NEPOOL has determined a relationship between family size and the annual use by ranges, refrigerators, dryers and water heaters. But this relationship is only applied to determine 1970 consumption, despite the fact that household size is projected to fall over time. No family size adjustment is calculated for other appliances, nor does family size affect the distribution of housing types, which is held constant. This error inflates space conditioning use.

-30-

Electric water heater consumption increases with dishwasher saturation, but does not respond to dishwasher or clothes washer efficiency improvements, which should have a substantial effect on average consumption. Apparently, NEPOOL does not understand the sources of anticipated efficiency improvement.

Average use by refrigerators, freezers, dishwashers, and dryers are projected to increase by as much as 2% annually. These figures are based on trends in the 1960's in California, in a time of falling electric prices. They are simply irrelevant to NEPOOL's forecast for the 1980's. In addition, since dishwasher and dryer efficiency targets are formulated on a per-load basis, these trends may imply

that the targets will not be met and that efficiency may actually decline.

NEPOOL does not apply the DOE efficiency standards so that refrigerators and freezers each comply as a class. NEPOOL recognizes separate frost-free and standard versions of both appliances, and projects a greater saturation of frost-free refrigerators (the forecast split for freezers is not specified). If the efficiency improvements are applied to the two versions separately, NEPOOL would again be predicting that the entire appliance class will not achieve the DOE standards.

-31-

In addition, NEPOOL simply ignores the probable enactment of residential appliance efficiency standards beyond the current DOE targets and the inevitable effects of building code changes on electric use by space conditioning and water heating.

Based on "remarks" and "testimony" by NERA personnel, NEPOOL makes a number of peculiar assumptions. They assumed unrealistically high (up to -1.2) short-run price elasticities for several appliances, and rather low (as low ass -0.5) long-run elasticities for other appliances.

Use by refrigerators, freezers, and televisions is amazingly assumed to exhibit no price elasticity at all. The elasticities were arbitrarily manipulated to yield aggregate residential sales in the calibration period.

Use in the miscellaneous category is predicted with the formula:

M = (.067 * t + 1.836) * Y * (.996 + .032 t) * M70 + C

where M = miscellaneous appliance use per household Y = personal income per household M70 = miscellaneous use in 1970 t = year-1970 C = constant

The first factor is NEPOOL's perceived time trend for appliance expenditures as a fraction of income in the period 1960-1973, which is extrapolated out indefinitely.

-32-

normal manner (e.g., by the CPI) and then added a 4.3% growth in appliance sales (due to an assumed falling appliance price) which was already captured in the trend. Again, NEPOOL's failure to document the model precludes adequate review. In any case, NEPOOL's projections of falling appliance prices are improper.

As a result of its triple trending (time, income, and appliance price) miscellaneous appliance use is expected by NEPOOL to increase over three times as fast as overall residential use from 1976 to 1990, at least for some states (not all the data has been made available).

Q: Are there errors in NEPOOL's handling of the interaction of appliances?

A: Yes, in at least two cases. Mr. Bourcier acknowledged one serious error which understates the reduction in range use due to increasing saturation of efficient microwave ovens. In addition, it does not appear that the model projects the net energy savings due to microwave ovens that the Report indicated were appropriate.

The effects of wood stoves on electric space heating use are incorporated for only two states; even in these states, the effects of wood stoves are held constant after 1979.

-34-

- Q: How does NEPCOL initialize its 1970 appliance consumption figures?
- A: NEPOOL found that 1970 residential consumption was overforecast by the model. NEPOOL therefore adjusted downward the average connected loads for most appliances, by a state-specific factor of 3.4% to 22.1%. Miscellaneous use, air conditioning and heating are excluded from the adjustment on the basis that "they were originally N.E. values." In fact, miscellaneous use is based solely on data from Connecticut, the state for which the adjustment is smallest. Large portions of the errors in other states' backcasts may result from differences in miscellaneous consumption from the 200 Connecticut customers from whom the miscellaneous data was extrapolated.

Window air conditioning usage appears to be based on Ohio and Baltimore data and on 1977 estimates by BECO and Northeast Utilities (Documentation 15). None of these sources used any New England consumption data, although New England cooling degree days are considered. Electric heating consumption is based on 169 all-electric homes (perhaps of

identical size and vintage) in Amherst, Massachusetts (Report, p. G-17). Perhaps the 22.1% error for Maine results from an overestimate of average heating consumption in that state based solely on the Amherst sample and weather.

-35-

Since it is the unadjusted uses, miscellaneous and space conditioning, which grow fastest in the forecast, NEPOOL's improper exclusion of these uses from the 1970 adjustment increase the overall forecast growth rate.

- Q: Is the NEPOOL industrial submodule any better than the residential submodule?
- A: No. The same problems in documentation exist, compounded by peculiar formulations, internal contradictions, and outright inaccuracies. There does not appear to be a single measure of goodness-of-fit or significance reported in the entire industrial submodule, for example.

Q: Please describe the industrial submodule.

- A: NEPOOL first divides the industrial employment (an output of the economic model) into production and non-production employees. To derive KWH sales, the production employment in each SIC in each state is then multiplied by annual man hours per employee, value added per man hour, and KWH per dollar of value added.
- Q: Please describe NEPOOL's forecast of production employment?
- A: It seems that rather than model the ratio of production to non-production employees directly, NEPOOL chose to forecast the growth rate in value added per employee for each class and then back out the ratio. This is a roundabout approach, and NEPCOL really does not

-36-

explain why it is used. Even NEPOOL became confused by this section of the module: on p. H-2 the Report says that the ratio increases if the production productivity growth rate is less than the non-production productivity growth rate (which is true), while on p. H-4 the Report claims th exact opposite. Furthermore, since the non-production employee productivity projections are based on New England data (from unspecified source and years) and the production employee productivity projections are from state data, the data seems to be incommensurate. Finally, NEPOOL's manipulation of the value-added-per-production-employee trending also affects the validity of the ratio.

Q: Please describe NEPOOL's projection of annual man-hours peremployee.

A: This factor has been falling since 1970, yet NEPOOL arbitrarily assumes that it started increasing in 1977. In addition, it is not clear whether the national employment forecasts utilized by NEPCOL use the same man-hour assumptions, and whether the data was appropriately selected. On the latter point, NEPCOL indicates that only "selected observations" were used in establishing the hours per employee ratio; it is not clear whether this selection affected other portions of the calibration process. In any case, the sudden increase in man-hours inflates the industrial forecast.

-37-

- Q: Please describe NEPOOL's forecast of value added per man-hour.
- A: NEPOOL uses two models for VAMH. Model 1 is a constant and Model 2 is an exponential growth rate. NEPOCL provides no documentation for their choice of model for each SIC for each state (plus New England and totals). In fact, the New England relationships, to which the states are assumed to converge, are not even provided in the documentation.
- Q: How does NEPOOL forecast the ratio of KWH sales per dollar of value added?
- A: NEPOOL derived their electric intensity trends for some sort of backcast and calibration procedure, involving the estimation of two trend factors. NEPOOL does not provide:

any rationale for the double trending,

any description of the estimation methodology,

any explanation of the level of aggregation (SIC, state, etc.),

any description of the data, such as its source or comprehensiveness,

any data,

1

11

łł

any of the estimated trends, or

. . .

any indication of goodness-of-fit or of statistical significance of the equations utilized.

-38-

- Q: Is price elasticity handled properly in the commercial sector?
- While the short-run elasticity is reasonable A : No. (-.2), the long-run elasticity of -1.0 is somewhat low, as NEPOOL admits. NEPOOL claims that this is appropriate, "since the selection of electricity for heating and cooling is treated separately through the saturation functions." But the heating saturation functions are based on upward time trends from the period 1966-1975, which captures the effects of falling prices, and the air conditioning "trends" are not documented at all. (Furthermore, the saturation rates are not corrected for commercial construction rates, which are probably important determinants). Therefore, the saturation trends should be discarded and the long-run elasticity increased to reflect reality.

Another problem occurs in the commercial air conditioning saturation forecasts. Saturations in 1970 are estimated on the basis of numbers of customers with air conditioning, rather than the number of employees in air conditioned commercial space. Since large commercial customers - large office towers, large stores, shopping malls - are already air conditioned, the fraction of air conditioned space (or employees) probably far exceeds the fraction of air conditioned customers. Therefore, NEPOOL is overestimating the potential for expansion.

- Q: Are there any other problems with the NEPOOL demand forecast which transcend individual submodules?
- A: At least two such problems are evident in the forecast. First, NEPOOL uses a rather low electric price forecast which is completely undocumented. Second, NEPOOL completely neglects the possibility of reforms in utility rates and operation, such as the establishment of time-of use rates, marginal cost pricing, fair backup and purchased power rates (for cogenerators and other power producers), load management, and utility conservation programs (e.g., voltage regulation, energy efficiency audits and consulting, changes in conditions of service).
- Q: Do the results generated by the NEPOOL model confirm the existence of the problems you have discussed?
- A: Yes. The model was calibrated on the 1970-1976 period and therefore generally fits well in that period. However, NEPOOL's backcasts for sales growth in 1976 and 1977 (where available) exceed actual growth for each of the major customer classes. Similarly, the model overforecast growth in total output by 1.4 percentage points in 1976, by 4.1 points in 1977 and 3.3 points in 1978. If the average post-calibration error continues in the NEPOOL forecast, output will rise at 0.4% in the 1978-89 period, to a total of only 86520 GWH in 1989, which is 36% less than the NEPOOL forecast for that year and only about 4.5% larger than 1978 output.

-44-

Peak growth rates were also overstated in both 1977 an 1978 by 3.5 percentage points. If this error continues in the rest of the forecast period, peak demand will grow at 0.3%, to a peak of 16019 MW in 1989. With existing capacity (minus scheduled retirements and retirements of all capacity now in deactivated reserve), currently planned purchases, and the capacity now under construction, New England would have a reserve margin of 54% in 1989. Please summarize the NEPOOL forecast.

A: NEPOOL appears to have created a model with numerous unjustified growth-producing assumptions including most of the factors mentioned above. NEPOOL then utilized high short-run elasticities and large commercial conservation corrections to neutralize this excessive growth in the calibration period. Once the calibration period ends, the model grows much too rapidly. Continuation of the infated trends, coupled with new growth-producing assumptions and errors, will produce inflated forecasts.

Q: Does this conclude your testimony on the NEPOOL demand forecast?

A: Yes.

Q:

-45-