COMMONWEALTH OF PENNSYLVANIA BEFORE THE PUBLIC UTILITIES COMMISSION

THE PENNSYLVANIA PUBLIC UTILITIES COMMISSION V. PENNSYLVANIA POWER & LIGHT COMPANY

Docket No. R-842651

TESTIMONY OF PAUL CHERNICK ON BEHALF OF THE PENNSYLVANIA OFFICE OF CONSUMER ADVOCATE

1

November 1984

1

i

Table of Contents

^

1	- INTRODUCTION AND QUALIFICATIONS	1
2 3	- THE RELIABILITY BENEFITS OF SUSQUEHANNA 2 - THE BENEFITS OF SUSQUEHANNA 2 FOR FUEL	9
	DISPLACEMENT	18
4	- THE COST OF POWER FROM SUSQUEHANNA 2	36
	4.1 - CAPACITY FACTOR	38
	4.2 - CARRYING CHARGES	55
	4.3 - FUEL COST	61
	4.4 - NON-FUEL O & M	62
	4.5 - CAPITAL ADDITIONS	66
	4.6 - INSURANCE	69
	4.7 - DECOMMISSIONING	72
5	- CONCLUSIONS	73
6	- BIBLIOGRAPHY	81
7	-TABLES	120
8	- APPENDIXES	
	A _ DECIME OF DALL CHEDNICK	

A - RESUME OF PAUL CHERNICK B - CAPACITY FACTOR DATA

TESTIMONY OF PAUL CHERNICK

1 - INTRODUCTION AND OUALIFICATIONS

- Q: Mr. Chernick, would you state your name, occupation and business address?
- A: My name is Paul L. Chernick. I am employed as a research associate by Analysis and Inference, Inc., 10 Post Office Square, Suite 970, Boston, Massachusetts.
- Q: Mr. Chernick, would you please briefly summarize your professional education and experience?
- A: I received a S.B. degree from the Massachusetts Institute of Technology in June, 1974 from the Civil Engineering Department, and a S.M. degree from the Massachusetts Institute of Technology in February, 1978 in Technology and Policy. I have been elected to membership in the civil engineering honorary society Chi Epsilon, and the engineering honor society Tau Beta Pi, and to associate membership in the research honorary society Sigma Xi.

- 1 -

I was a Utility Analyst for the Massachusetts Attorney General for over three years, and was involved in numerous aspects of utility rate design, costing, load forecasting, and evaluation of power supply options. My work has considered, among other things, the effects of rate design and cost allocations on conservation, efficiency, and equity.

In my current position, I have advised a variety of clients on utility matters. My resume is attached to this testimony as Appendix A.

- Q: Mr. Chernick, have you testified previously in utility proceedings?
- A: Yes. I have testified approximately thirty times on utility issues before such agencies as the Massachusetts Department of Public Utilities, the Massachusetts Energy Facilities Siting Council, the Texas Public Utilities Commission, the Illinois Commerce Commission, the New Mexico Public Service Commission, the District of Columbia Public Service Commission, the New Hampshire Public Utilities Commission, the Connecticut Department of Public Utility Control, the Michigan Public Service Commission, the Maine Public Utilities Commission, and the Atomic Safety and Licensing Board of the U.S. Nuclear Regulatory Commission. A detailed list of my previous testimony is contained in my resume.

- 2 -

Subjects I have testified on include cost allocation, rate design, long range energy and demand forecasts, costs of nuclear power, conservation costs and potential effectiveness, generation system reliability, fuel efficiency standards, and ratemaking for utility production investments and conservation programs.

- Q: Do you have a track record of accurate predictions in capacity planning?
- A: Several of my criticisms of utility projections have been confirmed by subsequent events or by the utilities themselves. In the late 1970's, I pointed out numerous errors in the load forecasts of several New England utilities, and of the New England Power Pool (NEPOOL), and predicted that growth rates would be lower than the utilities expected. Many of my criticisms have been incorporated in subsequent forecasts, load growth has almost universally been lower than the utility forecast, and the utility forecasts have been revised downward repeatedly.

My projections of nuclear power costs have been more recent, and have yet to be fully confirmed. However, as time goes by, utility projections have tended to confirm my analyses. For example, in the Pilgrim 2 construction permit proceeding (NRC 50-471), Boston Edison was projecting a cost of \$1.895 billion. I projected a cost between \$3.40 and \$4.93 billion

- 3 -

in my testimony of June, 1979. Boston Edison's final cost estimate (issued when Pilgrim 2 was canceled in September 1981) stood at \$4.0 billion.

In MDPU 20055,¹ Public Service of New Hampshire (PSNH) projected in-service dates for Seabrook of about 4/83 and 2/85, at a total cost of \$2.8 billion. I predicted in-service dates of 10/85 and 10/87, with a cost around \$5.3-\$5.8 billion on PSNH's schedule or \$7.8 billion on a more realistic schedule. At the time I filed my testimony in NHPUC DE 81-312, PSNH was projecting in-service dates of 2/84 and 5/86, with a total cost of \$3.6 billion, while I projected dates of about 3/86 and 6/89, and a cost of about \$9.6 billion. Within two months of my filing, PSNH had revised its estimates to values of 12/84, 7/87, and \$5.2 billion. On March 1, 1984, PSNH released a new semi-official cost estimate of \$9.0 billion, with in-service dates of 7/85 and 12/90, while PSNH's consultants released an estimate of \$10.1 billion. Thus, PSNH has moved its in-service date estimates, and increased its cost estimates, substantially towards my projections. Figure 1.1 compares the history of PSNH cost estimates for Seabrook to my estimates.

1. See Appendix A for full citations.

- 4 -

Year

5 -

In MDPU 20055 and again in MDPU 20248, I criticized PSNH's failure to recognize interim replacements, its error in ignoring real escalation in O & M, and its wildly unrealistic estimate of an 80% mature capacity factor. I suggested interim replacements of \$9.48/kw-yr., annual O & M increases of \$1.5 million/unit (both in 1977 \$) and 60% capacity factors for large PWR's. PSNH now includes capital additions, escalates real 0 & M slightly faster than inflation, and projects a mature capacity factor of 72%. Thus, PSNH has implicitly accepted my criticisms, even though the O & M escalation and capacity factor projections are still very optimistic. While my original analyses (and the studies I relied on) were based on data only through 1978, experience in 1979-83 confirms the patterns of large capital additions, rapid 0 & M escalation, and low capacity factors. The 60% PWR capacity factor figure, in particular, has been widely accepted by regulators (such as the California Energy Commission) and even utilities (such as Commonwealth Edison and now Central Maine Power).

Critiquing and improving on utility load forecasts and nuclear power cost projections has not been very difficult over the last few years. Many other analysts have also noticed that various of these utility expectations were inconsistent with reality. While PP&L's projections are more realistic than was typical in the late 1970's, its estimates

- 6 -

for Susquehanna 2 costs continue to be overly optimistic.

- Q: Have you authored any publications on utility ratemaking issues?
- I authored Report 77-1 for the Technology and Policy A: Yes. Program of the Massachusetts Institute of Technology, Optimal Pricing for Peak Loads and Joint Production: Theory and Applications to Diverse Conditions. I also authored a paper with Michael B. Meyer "An Improved Methodology for Making Capacity/Energy Allocation for Generation and Transmission Plant", which won an Institute Award from the Institute for Public Utilities. My paper "Revenue Stability Target Ratemaking" was published in Public Utilities Fortnightly, and another article "Opening the Utility Market to Conservation: A Competitive Approach" was presented at the recent conference of the International Association of Energy Economists, and will be published in the conference proceedings. These publications are listed in my resume.
- Q: What is the subject of your testimony?
- A: I have been asked to review the propriety of placing Susquehanna 2 in ratebase, or of otherwise reflecting the cost of that unit in current rates. I have specifically been asked to review the need for Susquehanna 2 to provide reliable service, and the likely benefits of the unit to PP&L ratepayers, when it enters service, and to suggest an

- 7 -

appropriate ratemaking approach in light of that analysis.

Q: How is your testimony structured?

The following two sections discuss the two possible A: justifications for Susquehanna 2: the reliability benefits and the reductions in fuel costs. The second section will discuss the magnitude and timing of the reliability benefits of Susquehanna 2, which may also be thought of as the "need for power" or the requirement that adequate capacity be available to meet peak loads with an adequate reserve In the third section, I will then consider the margin. unit's cost-effectiveness for back-out of more expensive fuel, in the near term and over the course of its useful life. The fourth portion of this testimony will provide the derivation of my estimates of Susquehanna 2's likely operating costs and capacity factor, which are required to assess its effect on fuel costs.² In the final section, I will make recommendations regarding the need for, and economic benefits of, Susquehanna 2; and regarding the disposition of PP&L's rate increase request related to that unit (including the phase-in proposal). I will also recommend alternative ratemaking treatment for the unit.

- 8 -

^{2.} The results of Section 4 are summarized at the beginning and end of the section. The costs derived in Section 4 are all in constant, levelized 1984 dollars, and are therefore comparable to current costs and rates.

2 - THE RELIABILITY BENEFITS OF SUSQUEHANNA 2

- Q: You indicated that reliability is possible for constructing generating plants. What determines whether a plant is needed for reliability?
- A: Utilities attempt to have sufficient capacity available to provide power whenever customers wish to use it, on and off-peak, throughout the year. Forced outages of generating facilities require that the utility have more capacity than the anticipated demand (a reserve margin) available at all times, and even with a reserve, generating reliability can never be 100% certain. For utilities which are members of power pools (as PP&L is a member of the PJM pool), the required reserve is determined by the utility's own load and supply characteristics, the load and supply characteristics of the pool, interconnections with other utilities and pools, and by the contractual obligations under which the pool's total reserve requirements are allocated to the member utilities.

Q: What are the reliability benefits of Susquehanna 2?

A: Susquehanna 2 is not needed for reliability. When Susquehanna 2 enters service, it will to some marginal extent increase the reliability of the PJM generation system. This

- 9 -

reliability is expected to be more than adequate for many years to come, although there is certainly <u>some</u> benefit from increased reliability in the interim. Once PJM reserve margins shrink to the merely adequate range, the presence of Susquehanna 2 on the system would allow the deferral of other measures to increase reliability, such as construction of new capacity, purchase of power from outside the region, or continued maintenance of existing capacity.

Within the PJM system, each individual utility has a responsibility to maintain a share of the generating capacity required by the pool. While the PJM agreement does not reflect well the relative reliability value of various kinds of capacity, which varies with the size and maintenance requirements, as well as the forced outage rates of each unit, each member utility is in roughly the same position as the pool as a whole. PP&L will not need the capacity of Susquehanna 2 to meet its capability responsibilities for at least the rest of the decade and probably musch longer, but it may eventually allow PP&L to defer new investments, or delay expenses, or accelerate the retirement of other units.

- Q: When would Susquehanna 2 have a reliability benefit to PP&L, under the terms of the PJM agreement?
- A: PP&L projects that this point will occur in 1998, when its "planned objective" demand forecast exceeds its projection of

- 10 -

available capacity without Susquehanna 2.³ This projection is likely to overstate the need for Sussquehanna 2, due to the considerable uncertainties in the validity of the PP&L forecast, in the level of reserves which PJM will require PP&L to maintain in the 1990's, and in the validity of excluding from the supply projection of any new generation (other than the Holtwood and Safe Harbor expansions).

- Q: Have PP&L's forecasts been reliable over the last decade?
- A: Figure 2.1 displays representative PP&L peak demand forecasts from late 1975 (already two years past the oil embargo) to 1983, and the actual peak loads in each of those years. PP&L has had to adjust its load forecast downward several times over the last eight years. This record hardly justifies confidence in PP&L's current projections.
- Q: Are there any particular reasons for believing that PP&L's current forecast will prove to be overstated?
- A: Yes. The cost of Susquehanna 2 itself, if passed along to customers in anything like the traditional manner, will depress sales and reduce the need for the plant. This is true whether or not the unit eventually proves to be less expensive than the fossil fuels it is backing out. If it

^{3.} This date is not affected substantially by the ACE sale. Approval of the JCP&L sale could move this date to 1991. Corrections of the problems discussed below may well move the date back to the late 1990's, even with the JCP&L sale.

turns out that Susquehanna 2 is economical, the cost of the remaining fuel which PP&L burns will be even higher than the impressive cost of Susquehanna 2, further depressing demand.⁴

- Q: Why is the PJM-required reserve margin for the 1990's uncertain?
- A: PP&L predicts that the level of reserves required of it by PJM will increase steadily over the next few decades. The basis for this belief seems to be a 1978 study (Interrogatory Staff 35) which projected, among other things, that PJM would shift from a summer-peaking to a winter-peaking pool, and that other utilities' forced outage rates (FOR's) will tend to improve relative to PP&L FOR's. The first assumption (which appears to be the more important by far) is rather suspect. Considering the availability and costs of alternative heating sources and space heating conservation, winter load growth much in excess of summer load growth seems unlikely.⁵

Name and the state and state and

4. For corresponding reasons, the high cost of Susquehanna 2 and/or the fuel it displaces PP&L's failure to include new alternative energy sources in its forecasts is suspect.

5. There are also alternatives, and especially conservation options, which displace primarily summer loads, but there are few which are as inexpensive and abundant as the space-heating options.

PP&L's second point may be correct in the short term, while the Susquehanna units are immature, but the addition of Limerick and Hope Creek 1 will help drive up the forced outage rates of Philadelphia Electric and PSE&G, as well. PJM's overall reserve requirements will tend to increase somewhat as more nuclear capacity is added to the system, but this may be partly offset by greater interties to other regions. It is not clear that PP&L's average forced outage rate will be very much closer to the pool average than it is now, or that the overall pool reserve will be much higher than it is now, at the end of the century.

- Q: Is it appropriate to assume that no new generation will be added in PP&L's service territory in the next 25 years?
- A: No. None of PP&L's capacity projections includes any new economic capacity from cogeneration, trash-burning, small power production, or any other source, whether owned by PP&L or by others, beyond the current plans for expansions of two existing hydro facilities.⁶
- Q: Is there any reason to believe that such capacity will be added?
- A: Yes. PP&L projects very rapid real (inflation-adjusted) increases in fossil fuel prices: if rates for power purchased

6. One of these expansions (Holtwood) appears to be essentially required by the terms of PP&L's license from FERC.

- 14 -

under PURPA are based on the same avoided costs PP&L uses in evaluating the economics of Susquehanna, the incentives for independent power production will increase substantially in the next couple of decades.

- Q: If and when Susquehanna 2 is needed, what is it worth to PP&L for reliability purposes?
- A: At a first approximation, the PJM capability measurement rules insure that a megawatt of any plant is equally valuable to a participant.⁷ The minimum fixed cost of enhanced reliability is probably the cost of combustion turbine capacity.

If it does become necessary to supply new capacity, that capacity can be obtained inexpensively. As shown in Table 2.1, Pennsylvania's existing combustion turbines cost about \$167/kw in 1983 dollars; inflating this estimate to 1985 at 0.5% more than GNP inflation⁸ yields a 1985 estimate of \$186/kw, or only about 9% of the cost of Susquehanna 2, with much lower fixed O&M, capital additions, insurance, and

8. This approximates the relationship between the GNP deflator and the Handy-Whitman gas turbine index in the 1970-81 period.

^{7.} This approximation somewhat overstates the value of Susquehanna 2 to PP&L, since large nuclear units tend to drive up the reserve requirement for the pool, and hence the reserves allocated to each of the members. Susquehanna 2 will also increase PP&L's average forced outage rate.

retirement costs. Gas turbines can also be brought on line with only a year or two lead time, so they are unlikely to be excess capacity when they are installed. Thus, it is clear that most of the cost of Susquehanna would never have been incurred for reliability

Q: What is the reliability value of Susquehanna 2 to PJM?

A: The value of Susquehanna 2 (or any other large nuclear unit) to PJM is considerably less than its value, under PJM capability responsibility formulas, to the individual PJM members which own that plant. Nuclear plants contribute relatively little to reliability for two reasons. First, due to their large maintenance requirements, nuclear units are often not available when needed.⁹ Second, due to the large size of new nuclear units, sufficient reserves must be provided to back up the simultaneous loss of a thousand megawatts or more. As a result, even with the same forced outage rates, large plants require more reserve capacity than small plants.

Analyses performed by the New England Power Pool (NEPOOL) indicate that nuclear capacity requires a reserve of approximately 50%. This is demonstrated in Tables 2.2 and

^{9.} For the same reason, forced outage rates, which are included in the PJM responsibility formula, make nuclear units less reliable.

2.3. The size effect would be less pronounced on the larger PJM system, but the reliability of large nuclear units is less than NEPOOL assumed.

- Q: Does this possible reliability benefit at or after the turn of the century justify charging ratepayers for Susquehanna 2 in 1985?
- A: No. In fact, I can not see that reliability considerations, standing alone, could justify any cost recovery for Susquehanna 2 until close to the time when it would be required for reliability purposes for PP&L. This is the traditional excess capacity argument: ratepayers should not have to carry the extra costs imposed when the utility brings on more capacity than is reasonably necessary to provide adequate service.

3 - THE BENEFITS OF SUSQUEHANNA 2 FOR FUEL DISPLACEMENT

- Q: You have explained why Susquehanna 2 will have very limited reliability benefits. What is the unit's major benefit to PP&L and the PJM system?
- A: In the light of its much higher cost per kw than other capacity, it is clear that Susquehanna 2 is being built almost exclusively for fuel displacement purposes. Like all nuclear units, it will provide lower fuel costs than the fossil-fueled plants which PJM currently has in abundance.
- Q: Have you analyzed the cost-effectiveness of Susquehanna 2 for fuel displacement?
- A: I have compared the cost of Susquehanna 2 under traditional ratemaking to the power it would displace, under a variety of assumptions regarding Susquehanna 2 cost and reliability. This is a fairly lenient type of comparison: an investment may be substantially suboptimal, but still be less expensive than existing coal plants, or especially oil. I have not attempted to address the larger issue of whether Susquehanna 2 is the most economical option for reducing fuel cost.
- Q: How much lower than oil and coal costs will the fuel cost of Susquehanna 2 be?

- A: Table 3.1 lists, and Figure 3.1 displays, the differences PP&L projects between Susquehanna 2 fuel costs and the fuel costs of the fossil (primarily coal-burning) plants it would be backing out. The projected differential starts in 1985 at about 2.9 cents per kWh, and rises to 30.3 cents per kWh by 2000, and to 107.7 cents/kWh in 2022. Over the first 10 years of the life of Susquehanna 2, PP&L projects that the savings value of a kWh of Susquehanna power will increase at 19.8% annually, or about 13% annually above the inflation rate.¹⁰ These savings are substantial, but they come at the even greater cost of building and operating Susquehanna 2.
- Q: How cost-effective is Susquehanna 2 under PP&L's current assumptions?
- A: It is clear from the information presented in PP&L's testimony and exhibits that even PP&L expects that the costs of the entire Susquehanna plant will exceed the benefits of the unit for much, and perhaps most, of its useful life. Since Susquehanna 1 will displace the most expensive fuel, Susquehanna 2 will tend to be less valuable than the first

^{10.} It is difficult to understand why this would be so. PP&L is only projecting a cost of \$102/barrel for 1% sulfur residual oil in 1995; at 6 million BTU/barrel and 10,000 BTU/kWh (both fairly pessimistic estimates), the cost of power generated from that oil would only be 17 cents/kWh, while PP&L projects an avoided fuel cost of 21.4 cents/kWh in 1995. Of course, some Susquehanna power would replace coal, and most interchange sales would involve split savings of some sort, so the operating savings would be expected to be less than the price of oil-fired power, not greater.

Fig 3.1: PP&L PROJECTED FUEL SAVINGS

- 20 -

Cents /kwh

unit. Unit 2 is also more expensive than its predecessor.

- Q: How do PP&L's data support the conclusion that Susquehanna will not pay for itself soon?
- In Table 3.2, I provide projections of the rate impact of the A : Susquehanna Station over its life, based on PP&L assumptions of cost, benefits, useful life, and load growth. Table 3.2 also provides a running simple total of the rate impact, and a running discounted total at a 15% discount rate.¹¹. Even without discounting the cash flow, Susquehanna 2 would increase rates for PP&L customers as a whole until 1995. By 1990, the consumers would have paid out almost \$1 billion extra. Discounting¹² the costs and benefits makes the situation slightly worse, pushing discounted breakeven to 1999. After PP&L's speculatively long unit life of 38 years, the discounted net savings are roughly \$1.3 billion dollars (in 1984 terms): a large value, but still smaller than the initial investment. These relationships are plotted in Figure 3.2. Thus, based on PP&L's own assumptions, Susquehanna 2 does not have positive present value benefits until the end

^{11.} I refer to these statistics as the "cumulative net cost" and the "discounted net cost", respectively. As explained in Section 4, the discount rate is an approximation of the low end of customer discount rates, and is also PP&L's marginal cost of capital.

^{12.} Discounting is necessary to make the costs and benefits in various years comparable: a dollar in 1995 is worth less than one in 1985.

Year

Savings (Billions \$)

of the century.

- Q: Are Table 3.2 and Figure 3.2 entirely the work of PP&L?
- A: Almost. I assumed that 50% of the capital additions were attributable to Unit 2, but this is a relatively minor cost item. I even relied on PP&L regarding the share of savings attributable to Unit 2. PP&L offered the judgement that Unit 2 benefits would be 45% of the plants's benefits, without any apparent analytical basis. Thus, the value of Unit 2 power per kWh is projected to be 90% of the average value of the plant's power: I assume this ratio remains intact throughout the life of the plant, although the Unit 2 share of savings will vary with refueling cycles in the early years.
- Q: Have you performed any other total-cost analyses?
- A: I have modelled the annual costs of Susquehanna 2 to PP&L ratepayers under conventional ratemaking techniques, for two sets of alternative assumptions. The inputs on which these analyses are based are the PP&L projections listed in Table 3.2, which I have labeled Case 1. In the other cases, which are based on the results of my review of PP&L's projections for Susquehanna 2 (described in Section 4 of this testimony), I have adjusted PP&L's projections to reflect more realistic assumptions, or at least assumptions more consistent with experience to date.
- Q: What other cases have you analyzed?

- 23 -

- A: I have repeated the previous calculations for two other cases:
 - Case 2, which uses PP&L's assumptions, except for the use of realistic capacity factors, representing actual BWR performance in the 1980's,
 - Case 3, which is the same as Case 2, but with annual capital additions 2.7 times as large as PP&L assumes, O&M expenses which continue to escalate at historical rates, decommissioning costs twice as large as PP&L assumes, and charges for return representing the debt and preferred rates of the issues which financed Susquehanna 2.

The results are shown in Tables 3.3 and 3.4, and in Figures 3.3 and 3.4. It is important to recognize that both of these cases use PP&L's very optimistic assumption that Susuehanna 2 will last 38 years, and also use PP&L's very high estimates of escalation in the value of operatings savings per kilowatt-hour.

- Q: Please describe the results of the Case 2.
- A: With realistic capacity factors (as described in Section 4.1 of this testimony), the first year in which Susquehanna 2 would save customers money on balance would be 1991. In that year, the cumulative net cost of the plant to PP&L's customers would have exceeded almost \$1 billion. Simple

- 25 -

- 26 -

breakeven would not be reached until 1996. Discounted costs would break even in 2013, nineteen years into the Unit's useful life, and the total discounted benefit would be about \$700 million in 1984 dollars.

- Q: Do these results change substantially in Case 3, where the operating costs are adjusted to more realistic values?
- A: Yes. With realistic operating cost estimates, Susquehanna 2 would cost ratepayers more than PP&L's projected operating savings each year until 1992, by which time the cumulative net cost of the plant to PP&L's customers would have exceeded \$1.2 billion, and would reach simple breakeven in 1999. It would never break even in present value terms: total discounted operating savings would be less than total charges to ratepayers throughout the plant's life. The present value of net costs to ratepayers would reach more than 800 million dollars in the early 1990's, and would only decrease to about \$400 million by 2006, after which costs would again exceed benefits. If the plant remained in service until 2022, the present value of the loss would rise above \$1.3 billion, but continuation of the historical trend in O&M costs would probably result in retirement of the plant in the first decade of the next century. At that point, the present value cost (for Unit 2) about \$400 million, not including the cost of the undepreciated portion of the plant, and the remaining funds required for decommissioning, which would also be in

the hundreds of millions of dollars.

- Q: Are the breakeven points applicable to individual customers or only to ratepayers as a class?
- A: The dates I calculated may be meaningful for all ratepayers collectively, but not individually. Due to load growth (if PP&L is correct that loads will grow substantially), the later benefits of Susquehanna 2 will be diluted more than the early costs, and only customers whose loads grow at the same rate as the system as a whole will break even at these dates. New customers and those with rapidly increasing energy consumption will realize positive cumulative benefits faster than I calculated, while customers who conserve in response to the high rates caused by Susquehanna 2 will break even later, if at all. Customers who leave the system before their breakeven date end up with a net loss, regardless of what happens to ratepayers as a group.¹³
- Q: Have you performed similar analyses, averaging the Susquehanna 2 rate effect over customer rates?
- A: Yes. Tables 3.5 to 3.7 provide this information for retail rates, calculated as the net savings from Unit 2 for each kWh of annual use, and for a residential customer, using 8000 kWh annually. The growth in sales tends to dilute the savings to

^{13.} The elderly are particularly likely to pay for Susquehanna 2 without receiving commensurate benefits.

individual customers. In Table 3.5, for Case 1, PP&L's assumptions, the crossover point, where annual rates decrease, comes in 1990, and simple breakeven, where a customer whose usage is constant finally sees a net benefit from the plant, comes in 1995. Both of these points occur in the same year for the system and for the individual customer, despite the dilution due to load growth. At a 15% discount rate, discounted breakeven occurs two years later for the customer than for the system, in 2001. For the 8000 kWh residential customer, this Case would amount to paying out \$320 more before the unit starts to save money. The same customer will wait 17 years to break even in present value, and wind up after 38 years with a saving equivalent to \$220 in 1984. That analysis assumes that the customer stays on the system for 38 years, and that Susquehanna 2 survives equally long. A customer who left the system in the early 1990's would have suffered a net loss due to Susquehanna 2 of more than \$230 in 1984. These results occur even under the high optimistic PP&L assumptions.

Tables 3.6 and 3.7 repeat this analysis based on the assumptions in Tables 3.3 and 3.4, respectively. The three cents/kWh projections are graphed in Figures 3.5 through 3.7. The most significant difference between the system and the customer occurs in Case 2: the system reaches discounted breakeven in 2003, but the customer with constant usage

- 29 -

- 30 -

Year

- 31 -

- 32 -

reaches that point in 2007. If past trends continue (Case 3), the customer never breaks even in present value.

Table 3.8 summarizes some measures of cost-effectiveness for each of the three total-cost cases and each of the cents/kWh analyses: the years of crossover, simple breakeven, and discounted breakeven, the cumulative net cost to ratepayers at crossover, and the net present cost.

- Q: Do these results indicate whether Susquehanna is likely to be a good investment under conventional ratemaking treatment for the customers who pay for its early years?
- A: The particular cases I presented above were selected from a wide range of possible outcomes. It is almost certain that PP&L's projections represent a best case for Susquehanna economics, but it is difficult to determine what a comparable worst case would look like.

What is clear from this analysis is that Susquehanna will be very expensive in its early years, as compared to its benefits, and that plausible performance and cost levels, and cost trends, would prevent Susquehanna Unit 2 from ever saving money for PP&L's customers. Furthermore, what might pay off for the system over 35 years may be highly uneconomic for individual customers over 10 to 15 years.

- 33 -

The variation in effects between customers is even greater than that suggested by the differences in net benefits for various time periods. Customers also vary in terms of their discount rates. The 15% discount rate which I used in my calculations, is very similar to PP&L's estimated 14.6% marginal cost of capital; use of the 14.6% rate would be consistent with standard utility practice. While this rate may be appropriate for some utility purposes, it is almost certainly lower than the discount rate that many ratepayers would apply in making their own decisions regarding energy cost reduction. This would be particularly true for customers with limited access to capital, such as low-income households, and financially strapped industrial operations. Higher discount rates would imply even higher discounted net present costs.

Q: What can be concluded from these analyses?

A: First, even using PP&L's own projections, Susquehanna 2 will not save money for PP&L customers who pay for the plant's early, uneconomic years, unless they remain customers for at least fifteen years. Second, given PP&L's own projections, many customers would be better off if Susquehanna 2 had never been started, or had been canceled or sold off long ago. Third, if Susquehanna 2's cost and performance are consistent with past experience and trends, it is likely to be a poor

- 34 -
investment for virtually all the ratepayers, and for customers as a whole.

4 - THE COST OF POWER FROM SUSOUEHANNA 2

- Q: How have you estimated the cost of Susquehanna 2?
- A: I have attempted to determine realistic estimates for the duration of Susquehanna 2 construction, its construction costs, and the various costs of running and decommissioning the unit. Based upon analyses of historical performance and trends:
 - Capacity factors (based on design rating) for Susquehanna 2 will probably average about 51% in the first four years and 60% thereafter, as compared to PP&L's average of 59% in the first four years and 70% thereafter.
 - Non-fuel O & M must be expected to continue escalating much faster than general inflation, and faster than PP&L is projecting.
 - 3. The capital cost of the plant will also increase significantly during its lifetime, at about twice the rate PP&L projects.
 - Decommissioning and insurance must be expected to cost more than PP&L currently estimates.

This section also discusses choices of rates of return and discount rates used in evaluating the costs and benefits of Susquehanna 2 costs and benefits to ratepayers.

Detailed analyses of these cost components are presented below, including comparisons of my estimates to those of PP&L.

•

4.1 - CAPACITY FACTOR

- Q: How can the annual kilowatt-hours output of electricity from each kilowatt of Susquehanna 2 capacity be estimated?
- A: The average output of a nuclear plant is less than its capacity for several reasons, including refueling, other scheduled outages, unscheduled outages, and power reductions. Predictions of annual output are generally based on estimates of capacity factors. Since the capacity factor projections used by PP&L are wholly unrealistic, it may be helpful to consider the role of capacity factors in determining the cost of Susquehanna 2 power, before estimating those factors.

The <u>capacity factor</u> of a plant is the ratio of its average output to its rated capacity. In other words

In this case, it is necessary to estimate Susquehanna 2's capacity factor, so that annual output, and hence cost per kWh, can be estimated.

On the other hand, an <u>availability factor</u> is the ratio of the number of hours in which some power could be produced to the

- 38 -

total number of hours.

The difference between capacity factor and availability factor is illustrated in Figure 4.1. The capacity factor is the ratio of the shaded area in regions A and B to the area of the rectangle, while the availability factor is the sum of the width of regions A, B, and C. Clearly, if the rated capacity is actually the maximum capacity of the unit, the availability factor will always be at least as large as the capacity factor and will generally be larger. Specifically, the availability factor includes the unshaded portion of region B, and all of region C, which are not included in the capacity factor.

- Q: What is the appropriate measure of "rated capacity" for determining historical capacity factors to be used in forecasting Susquehanna 2 power costs?
- A: The three most common measures of capacity are

Maximum Dependable Capacity (MDC);

Design Electric Rating (DER); and

Installed or Maximum Generator Nameplate rating (IGN or MGN).

The first two ratings are used by the NRC, and the third by

The MDC is the utility's statement of the unit's "dependable" capacity (however that is defined) at a particular time. Early in a plant's life, its MDC tends to be low until technical and regulatory constraints are relaxed, as "bugs" are worked out and systems are tested at higher and higher power levels. During this period, the MDC capacity factor will generally be larger than the capacity factor calculated on the basis of DER or IGN, which are fixed at the time the plant is designed and built. Furthermore, many plants' MDC's have never reached their DER's or IGN's.

Humboldt Bay has been retired after fourteen years, and Dresden 1 after 18 years, without getting their MDC's up to their DER's. Connecticut Yankee has not done it in 16 years; nor Big Rock Point in 19 years; nor many other units which have operated for more than a decade, including Dresden units 2 and 3, and Oyster Creek. For only about one nuclear plant in five does MDC equal DER, and in only one case (Pilgrim) does the MDC exceed the DER. Therefore, capacity factors based on MDC will generally continue to be greater than those based on DER's, throughout the unit's life.

The use of MDC capacity factors in forecasting Susquehanna 2 power cost would present no problem if the MDC's for

- 41 -

Susquehanna 2 were known for each year of its life. Unfortunately, these capacities will not be known until Susquehanna 2 actually operates and its various problems and limitations appear. All that is known now are initial estimates of the DER and IGN, which I take to be 1050 MW and 1152 MW, respectively. Since it is impossible to project output without consistent definitions of Capacity Factor and Rated Capacity, only DER and IGN capacity factors are useful for planning purposes. I use DER capacity factors in my analysis.

Actually, DER designations have also changed for some plants. The new, and often lower, DER's will produce different observed capacity factors than the original DER's. For example, Komanoff (1978) reports that Pilgrim's original DER was 670 MW, equal to its current MDC, not the 655 MW value now reported for DER. Therefore, in studying historical capacity factors for forecasting the performance of new reactors, it is appropriate to use the original DER ratings, which would seem to be the capacity measure most consistent with the 1050 MW expectation for Susquehanna 2. This problem can also be avoided through the use of the MGN ratings, although MGN ratings tend to be nominal, with limited relation to actual capability.

Q: Are PP&L's projections of Susquehanna 2 capacity factors reasonable?

- A: No, they are significantly overstated. PP&L assumes that Susquehanna 2 will exceed previous reactor performance. After discussing the available information on nuclear capacity factors, and presenting consistent projections for Susquehanna 2, I will describe some of PP&L's errors in detail.
- Q: Have any studies been performed of the historic capacity factors for operating reactors?
- A: Yes. Several statistical analyses of the capacity factors of actual operating BWR nuclear plants have been performed, including those for the Council on Economic Priorities (CEP) (Komanoff, 1978), Sandia Laboratories studies for the NRC (Easterling, 1979, 1981) and a study by National Economic Research Associates (Perl, 1981).

The Komanoff study, the third in an annual series, utilized data through 1977 and projected a levelized capacity factor for the first eight full operating years for 1050 MW BWR reactors at 48.4%, correcting the size trend on the assumption that the Brown's Ferry fire was not size related. An alternative statistical analysis predicted a 44.2% capacity factor in years 1-4, rising to 51.6% in years 5 and later.¹⁴

^{14.} This study is now rather dated. However, considering the crucial role of Mr. Komanoff in applying statistical techniques

The first NRC study projects capacity factors on the basis of maximum generator nameplate (MGN). The prediction for an 1152 MW (MGN) BWR, expressed in terms of an 1050 MW DER, would be 49.9% in the second full year of operation, 52.1% in the third full year, and 54.3% thereafter. No further maturation was detected. All results for the first partial year and first full year of operation were excluded.

The second NRC study uses the same methodology and reaches similar, if somewhat more optimistic, conclusions. Easterling develops several equations for BWR's, using different data sets and different maturation periods, and concludes that maturation may continue through year 5. Table 4.1 shows the results of the equations which can be evaluated for Susquehanna 2. The first equation uses all data and four-year maturation, the second excludes two unit-years of particularly poor performance, the third introduces 5-year maturation, and the last excludes the size variable. The size variable is of low statistical significance in Easterling's results, but there is strong evidence which supports the belief that size does affect performance.¹⁵

to capacity factor analysis, it would not be appropriate to exclude some mention of his work.

^{15.} This evidence includes strong size trends in fossil plant performance, PWR performance, and even BWR performance excluding the two largest plants, as discussed below. PP&L's witness, Mr. Koppe, has repeatedly acknowledged the existence of a size trend

The use of the MGN measure of size introduces some problems in interpreting Easterling's results. Susquehanna, with a DER of 1050 MW, has the same nominal generator rating as units with DER's of 1065 to 1098 MW. To determine a more typical MGN for a 1050 MW DER plant, I computed the average MGN/DER ratio for the plants in Easterling's data set, which was 1.0442, compared to the 1.0971 value for Susquehanna. Table 4.1 presents the results of Easterling's regressions for a 1152 MW MGN BWR, a 1050*1.0442 = 1096 MW MGN BWR, and the DER capacity factors computed from the normalized MGN results.

Perl (1981) uses a very different functional form in the capacity factor equation, includes a vintage variable, and mixes in PWR's and some very small units.¹⁶ The resulting equation predicts capacity factors rising from 55.9% in year 1 to 65.5% in year 5 at a 1050 MW unit (like Susquehanna 2). Contrary to NERA's normal practice, this regression allows the age effect to continue linearly for an unspecified period, so it is difficult to interpret the results past the

for DWDLa

for BWR's.

^{16.} In general, these very small units do not fall on the size trend of the larger units. In fact, it may be impossible for them to do so, since extrapolating the size trends observed in the 500 - 1000 MW range back to the 100-MW range may produce capacity factor projections close to or exceeding 100%. As a result, small units are apt to reduce the estimated size coefficient.

end of the maturation period. The NERA study itself uses a 61% overall capacity factor in its cost calculations for Limerick, similar in size and design to Susquehanna.

- Q: Have you conducted your own regression analysis of BWR capacity factors?
- A: Yes. The data is listed in Appendix B, and the results of my regressions are given in Table 4.2. Projections for Susquehanna 2 performance, based on those results, are presented in Table 4.3. As shown in Table 4.2, I incorporated the following variables:
 - 1. unit size, in original DER,
 - 2. unit age, with maturation assumed at 5 years,
 - the portion of a refueling outage which occurred in the year, usually taking the values of 0 or 1,
 - 4. an indicator for units of more than 1000 MW, and
 - 5. indicators for various recent years.

Data were available for 192 full calendar years of operation at BWR's of more than 300 MW from 1974 to 1983. A small amount of pre-1974 operating experience could not be used for lack of refueling data.

Equation 1 demonstrates that 1979 was a better year for BWR performance (although not significantly so), and that each of

- 46 -

the following years has been progressively worse. Despite the steady downward trend in recent years, I grouped the post-1979 data in Equation 2, which shows that 1980's performance has been 9.3 percentage points below 1970's performance. Equation 3 repeats Equation 2, omitting Brown's Ferry in 1975 and 1976. Table 4.3 provides the projections of Equations 1, 2, and 3 for Susquehanna 2, assuming that it enters service January 1, 1985, that it operates under the conditions which have prevailed recently, and that it shares in whatever benefits have allowed Browns Ferry and Peach Bottom to escape the size trend that affects PWR's and smaller BWR's. Depending on the Equation, the mature capacity factor ranges from 54% to 60%.

- Q: What capacity factor value should be used in estimating Susquehanna 2 power cost?
- A: Average life-time capacity-factor estimates for units like Susquehanna 2 would seem to lie in the range of 50% to 65% based on regression analyses of the historical record. There is a great deal of variation from the average, however; the regressions typically explain less than a third of the variation in the data, and the first NRC study derived 95% prediction intervals of about 10% for years 2 to 10 at 1100 MW BWR's. Roughly speaking, those earlier NRC results predict that 19 out of every 20 nuclear units of the Susquehanna 2 size and type would have average ten-year

- 47 -

capacity factors between 37% and 47%, with the 20th unit having a capacity factor outside that range. Actually, the variation would be somewhat larger, due to the greater variation in the first partial year and the first full year.¹⁷

Predicting the future effects of regulation, of safety issues, and of aging is difficult at best. Overall, I feel most comfortable using the results from Equation 3 in Table 4.3, which uses data through 1983, corrects for the variations due to refueling patterns, and allows for the explicit selection of the operating conditions assumed for the future, which I freeze at average 1980-1983 conditions, some three points above 1983 results. Improvements in these conditions could also be assumed, but given the persistence of sub-average conditions and the downward trend in every year since 1979, deterioration seems more likely than improvement. Thus, I believe the best current estimates for Susquehanna are 50%, 44%, 58% and 51% in years one to four (averaging 50%), and an average of 60% threafter.

Q: Are PP&L's projections for Susquehanna 2 capacity factor reasonable?

^{17.} On the other hand, some of the apparent variation may result from the timing of refuelings, which would tend to average out for any individual unit.

- A : No. To compare the accuracy of the capacity factors I derived above from the Easterling results, and PP&L's projections, to actual results, I have performed the calculations presented in Table 4.4. For the five BWR's over 1000 MW which had entered service by 1979, the average capacity factor as of December 1983 was 56.7%. The capacity factor estimates which I derived from Easterling (1981) predict an average of 61.1%, while PP&L would predict an average of 65.9%. Clearly, PP&L's expectations are highly optimistic. The performance of each of these five units is somewhat below the Easterling results; this is true even if the Browns Ferry 1 and 2 data is adjusted to remove the direct effects of the fire at that The actual five-unit average will vary with refueling plant. schedules, is based on only two plants and two utilities, and has less data than either Easterling or I used. At the very least, the actual data supports the conclusion that the Easterling results do not understate capacity factors, based on average historical conditions. My results are similar to Easterling's for those average conditions.
- Q: Have you performed any analyses on the data from these large BWR's, on an annual basis?
- A: Yes. Table 4.5 presents the annual capacity factors for the units used in the previous analysis, through December 1983. No other large (over 1000 MW, or even over 825 MW) BWR's have completed a full year of commercial operation. I have

assumed that the very low capacity factors for Browns Ferry in 1975 and in 1976, resulting from the fire at that plant, are not generated by the same sort of random process which accounts for the other variation in nuclear capacity factor. However, there is no reason to believe that some comparable (if not exactly identical) problem can not occur for Susquehanna. Hence, I delete these three observations from the individual year calculations, and instead reflect the probability of a major problem by computing the average effect. Compared to the results for all the other plants, this event reduced capacity factors by a total of 82.3 percentage points from average first year performance, and 48.0 points from second year performance, in 41 unit-years of experience, for a 3.2% reduction in all capacity factors. This calculation is also shown in Table 4.5. The average capacity factor which results from this analysis is 57.1%; the mature capacity factor is 56.3%. The overall and immature average are somewhat overstated because they include data from before the Three Mile Island accident, which has depressed capacity factors consistently over the last four Even so, this analysis indicates that PP&L's years. projections for Susquehanna 2 capacity factor are much higher than the actual performance of large BWR's.

Q: Is it appropriate to include the period since 1979, when the TMI accident and subsequent regulatory actions affected nuclear plant operation, in the analysis of nuclear capacity

- 50 -

factors?

I believe that it is, for two reasons. First, the regulatory A: effects of Three Mile Island have depressed PWR capacity factors for the last five years, and BWR capacity factors for the last four years, with no sign of recovery to previous levels. Second, several more major nuclear accidents or near-misses are likely to occur before the scheduled end of Susquehanna 2 operation. Various recent estimates of major accident probabilities range from 1/200 to 1/1000 per reactor year (See Chernick, et al., 1981; Minarick and Kukielka, 1982). These estimates are based on both the implicit probability assessments of nuclear insurers, who must actually bet their own money on being correct, and on engineering models of actual reactor performance. Thus, major accidents can be expected every two to ten years once 100 reactors are operating. If anything, the 1968-83 period has been relatively favorable for nuclear operations, and BWR performance appears to be deteriorating steadily in the 1980's.

Q: What are the errors in PP&L's capacity factor projections?

A: Mr. Koppe, who supplies PP&L's capacity factor projections, makes at least two kinds of errors. First, he assumes that the string of nuclear operating and safety problems, which have developed over the last decade or so, has ended. While he is undoubtedly correct that the fire at Browns Ferry, or the exact accident that occurred at Three Mile Island, will not recur, it is perfectly possible that a third event (and more thereafter) will have just as significant direct and regulatory effects. Indeed, the assessments of major accident probabilities which I listed above indicate that such events must be expected periodically. While we all may hope that the operational problems of nuclear power plants are over, it does not seem reasonable to set charges for ratepayers based on the assumption that everything will go well in the future.

Second, at least one of his specific adjustments to past experience appears to be incorrect. Mr. Koppe notes that the mature capacity factors of the plants in his historical database¹⁸ are about three percentage points below their equivalent availability factors (EAF's). EAF is a subjective measure, reported by the operating utility and representing only the utility's opinion of what the unit might have done, if not for factors which the utility may wish to consider to be "economic". These "economic" factors include, for example, reductions in output to delay a refueling outage until other nuclear units have completed maintenance or repair procedures. Mr. Koppe assumes that Susquehanna 2 will have a capacity factor similar to historical EAF's, rather

^{18.} His selection of plants is quite similar to mine: he excludes two units used in my regressions.

than historical CF's. Under the best of conditions, EAF is a performance measure of limited usefulness, due to its subjective nature., such as conflicts with other nuclear outages. Furthermore, the calculation of EAF assumes that the unit would have run <u>perfectly</u> if not for the "economic" limitation.

Even if EAF were not such a flawed measure, there is little reason to believe that historical EAF's would provide better (or even as accurate) predictors of Susquahanna CF than would historical CF's. Mr. Koppe suggests that EAF's differ from CF's only because of "load following" and "load leveling", which Susquehanna 2 will not do. He also suggests that Susquehanna will be unusual in that it will be base-loaded. In fact, essentially all nuclear units in the US are base-loaded, and the evidence for load following, <u>per se</u>, is scant.

The error in Mr. Koppe's assumption about load following, and its relevance to Susquehanna, can best be seen by examining the EAF's and CF's reported for existing PJM nuclear units. These data (taken from a report Mr. Koppe authored) are listed in Table 4.6: there are sizable differences between EAF and CF for existing nuclear units in the pool, despite baseload operation and a much less nuclear-rich mix of capacity than will exist with Limerick, Hope Creek, and

- 53 -

Susquehanna in service. It is clear from that Table that EAF's are useless for predicting capacity factors for PJM nuclear units: it appears likely that Susquehanna will have reported EAF's higher than its CF's, at least in some years.

4.2 - CARRYING CHARGES

- Q: How should the annual carrrying charges for Susquehanna 2 be calculated?
- A: The carrying charges are determined by the cost of capital, income and other taxes, and the assumed unit lifetime. I have assumed a useful life for Susquehanna 2 of 25 years, as a compromise between possibilities of 20 years and 30 years. The shorter lifetime is based on an analysis of the experience of smaller nuclear units, as discussed in Chernick, et al. (1981, pp. 101-109), while the longer lifetime is a more standard industry assumption.¹⁹ For the cost of capital, I have computed the average cost of capital using debt and preferred rates from Susquehanna's construction period, as shown in Tables 4.7 to 4.9; Table 4.9 uses the capital structure and equity return assumed by PP&L's "Overview" in this case.

For the nominal dollar analysis presented in Section 3, I have adopted and extrapolated PP&L's tax figures.

Q: What other costs must be added to the Susquehanna 2 carrying

19. In addition to the small units which were discussed in Chernick, <u>et al.</u>, 1981, San Onofre 1 has been out of service for about two years and may also have been retired <u>de facto</u> after only 14 years of service.

costs to determine the total cost of Susquehanna 2 power?

- A: The other components of the costs of Susquehanna 2 which are directly assignable to that plant are:
 - fuel;
 - non-fuel operation and maintenance (O&M) expense;
 - insurance; and
 - capital additions (also called interim replacements);
 - decommissioning.
- Q: Have you computed a discount rate applicable to PP&L's investment in Susquehanna?
- A: I have calculated PP&L's marginal cost of capital, in Table 4.10, based on PP&L's projected cost of new debt & preferred, and the implied return on equity in its \$330 million rate request. This is a standard approximation for utility discount rates, but is not really the proper approach for determining the discount rate to be applied to customer charges for Susquehanna.
- Q: Is PP&L's use of a 9.7% discount rate appropriate?
- A: No. It is important to recall that this discount rate is

being used to discount cash charges to customers, 20 and should therefore reflect the time and risk preferences of the customers, rather then of PP&L itself, or of its shareholders. The discount rate used should reflect the degree of risk involved in the projected stream of costs and If Susquehanna just broke even for the customers benefits. (had a 0 net present value) at 10%, for example, it would be equivalent to a return of 10%. For an investment with the risk characteristics of Susquehanna, this is an implausibly low target return, roughly equivalent to a ten-year pavback.²¹ This is roughly the return one would expect from an investment approximately equivalent to risk-free Treasury securities. I do not believe that any reasonable person would suggest that Susquehanna is as safe an investment as government bonds.

In addition, when electric ratepayers have the opportunity to make conservation investments, even ones much less risky than Susquehanna, they generally appear to require returns well in excess of 10%, and even well in excess of the 15% that I use

20. It is meaningless to apply discount rates to anything other than cash, and the discounting is applied to net customer savings, not to PP&L's cash outlays.

21. This simplification would be correct if the benefits to the ratepayers were very long-lived and constant, which they are not. Since traditional ratemaking front-loads the costs of new plants, and since the benefits of Susquehanna grow over its lifetime, the payback would be later than ten years.

as a discount rate. Industrial firms, for example, will rarely make non-productive investments with expected paybacks of more than four years, and for some firms this target is less than one year. Similarly, Hausman (1979) found that residential consumers used real discount rates of 15-25% in comparing appliances of differing efficiencies. These high discount rates indicate that most consumers would not be willing to pay the costs of Susquehanna, if they could expect a savings return of only 14%, and they would not even consider it at the 10% discount rate which PP&L appears to prefer.

Given the considerations outined above, the 15% discount rate I use is probably a minimum reasonable value, and a considerably higher figure (say 20%) may be appropriate. First, PP&L is basing its discount rate on its costs of capital, rather than the customer's discount rates; this is a common error in utility practice. Second, PP&L incorrectly calculates even its own cost of capital by using the "after tax cost of money" computation, which subtracts the tax benefits from the debt portion of the capital structure. This is an appropriate calculation of <u>corporate</u> discount rates only if the subject investment is as risky as the company's average investment²² and if either (a) revenues do

^{22.} Susquehanna must be much riskier than PP&L's average business risk, for its distribution, transmission, and even fossil

not vary with financial structure (which is true for most corporations, but not for utilities), or (b) there is no cash return on the investment (which is true for AFUDC, but not for rate base). If the return on investment is to be covered by increased revenues, taxes must be <u>added</u> to the cost of money, not subtracted, to establish a discount rate at which the consumers would be indifferent between expensing and capitalizing expenditures. This point is illustrated in Table 4.11, which compares a \$1000 cash expenditure with the same cost rate-based and depreciated over 10 years, under traditional rate-base treatment, and shows that the present value of the annual revenue requirements is equal to the initial investment only for a discount rate equal to the average return, plus taxes on the equity portion. Since the utility is paid a cash return on its investment, it must pay additional taxes if it capitalizes, rather than expenses, the \$1000 cost in the example. Hence, the discount rate at which the consumers are "neutral" between expensing and capitalizing is the overall rate of return, plus income taxes. Only if the capitalized investment yields no current return will the net-of-tax rate be the discount rate at which ratepayers are indifferent between expensing and capitalizing the cost.

While the preceding calculation is an interesting one, it generation.

only determines the breakeven discount rate in the choice between capitalizing and expensing costs, not what actual <u>consumer</u> discount rates are. As I explained above, only the <u>consumers</u>' actual time preferences should matter in selecting a discount rate. 4.3 - FUEL COST

- Q: What nuclear fuel costs have you used?
- A: I used PP&L's estimates of 0.6 cents/kWh for Susquehanna fuel in 1985, rising to 10.3 cents in 2022. These figures are listed in Table 3.1.

.

4.4 - NON-FUEL O & M

- Q: How have you estimated non-fuel O & M expense for Susquehanna 2?
- A: I have examined the available historical data on nuclear O&M for domestic nuclear plants. Table 4.12 lists the non-fuel O&M for each U.S. nuclear plant for each full operating year from 1968 to the most recent available data. Years in which units were added have been deleted.

Table 4.13 restates this data a little more conveniently for all two-unit plants which were on line before 1980, along with the GNP deflator. Table 4.13 also presents the annual nominal and real compound growth rates for each plant.

Table 4.14 presents the results of five regressions using the data for plants of more than 300 MW, from Table 4.12, in 1983 dollars. A total of 413 observations were available. All five equations indicate that real O&M costs have increased at 13.6% to 13.8% annually, and that the economies-of-scale factor for nuclear O&M is about 0.50 to 0.57, so doubling the size of a plant (in Equations 1 and 2) or of a unit (in Equations 3 - 5) increases the O&M cost by about 42-48%. Equations 1 and 2 indicate that, once total plant size has been accounted for, the number of units is inconsequential,

and the effect on O&M expense is statistically insignificant: indeed, the two equations disagree on the direction of the small effects they do detect. Equations 3 and 4 both measure size as MW per unit, and they both find that the effect of adding a second identical unit is just a little less than the effect of doubling the size of the first unit: 43% for Equation 3 and 39% for Equation 4.²³ Equation 5 tests for extra costs in the Northeast, which are commonly found in studies of nuclear plant construction and operating costs, but is otherwise identical to Equation 3. Indeed, there is a highly significant differential: Northeast plants cost 28% more to operate than other plants (using the definition of North Atlantic from the Handy-Whitman index). I will use this Equation as the basis of my projection.

- Q: What O&M projection would your regression results predict for Susquehanna 2?
- A: Table 4.15 extrapolates the results for Equation 5 for a first and a second unit of 1152 MW MGN, and displays the annual nominal O & M cost implied for each Susquehanna unit over the period 1983 - 2022, which is PP&L's projection of the plant's useful life. The same table compares these

^{23.} The two equations do treat extra units differently after the second: a third unit increases costs by another 39% (or 55% of the first-unit cost) in Equation 4, but only by 23% (or 33% of the first-unit cost) in Equation 3. The treatment of additional units in Equation 3 seems more plausible, in that each succeeding unit should be progressively less expensive to run.

results with PP&L's projections.

Q: Are PP&L's projections reasonable?

Based on national trends, PP&L's projections for O&M for the A: plant are highly optimistic, but not implausible: PP&L predicts somewhat high costs in the first few years, but a very low real growth rate.²⁴ The proportion of costs allocated to the second unit, as compared to the first, is much larger than would be expected from national data. Thus, I believe that PP&L's projection of Unit 2 O&M costs can be used as a plausible, but quite optimistic estimate of those costs. However, as Equation 5 indicates, Susquehanna is likely to be much more expensive to operate than plants outside the Northeast. Indeed, it appears from the first-year data at Susquehanna 1, and from PP&L's short-term projections of O&M costs, that Susquehanna is a particularly expensive plant to operate. Annualizing first-year non-fuel O&M at Susquehanna 1²⁵ yields a 1983 first-unit O&M cost of \$63.8 million, compared to the Equation 5 projection of \$52.2 million.

Protracted geometric growth in real O & M cost at historical rates would probably lead to retirement of this plant (and

24. PP&L's O&M estimates apparently are meant to include insurance, so they are further understated.

25. \$35 million over 29 weeks.

most nuclear plants) fairly early in the century, as it would then be prohibitively expensive to operate (unless the alternatives were even more expensive than PP&L predicts). High costs of O & M and necessary capital additions were responsible for the retirement (formal or de facto) of Indian Point 1, Humboldt Bay, and Dresden 1, after only 12, 13, and 18 years of operation, respectively. Thus, rising costs caught up to most of the small pre-1965 reactors during the 1970's: only Big Rock Point and Yankee Rowe remain from that cohort. The operator of LaCrosse, a small reactor of 1969 vintage, has announced plans to retire it in the late 1980's. San Onofre 1, a 450 MW unit, appears to have been retired, as well, after about 15 years of service.

On the other hand, our experience with nuclear O&M escalation stretches over only 15 years (1968-1983), so projecting continued real escalation past the year 2000 (another 15 years into the future) is rather speculative.

On the whole, I believe that my projection of \$33 million in 1985, with 20.6% annual escalation is more likely than PP&L's projection of \$55 million in 1985, with only 8.1% annual escalation.

- 65 -

4.5 - CAPITAL ADDITIONS

- Q: Is PP&L's estimate of capital additions to Susquehanna 2 reasonable?
- A: No. PP&L projects annual capital additions (or interim replacements) which are considerably lower than experience would indicate.
- Q: How did you estimate capital additions?
- I gathered data for all plants for which cost data was A: available from FERC and DOE compilations of FERC Form 1 data (now reported on p. 403), through 1983. The data is listed in Table 4.12. Each plant is included for all years in which no units were added or deleted, and for which the data were not clearly in error. The available experience totalled 477 unit-years of operation, and the average annual capital addition in the database was \$19.4/kw expressed in MGN terms, or about \$22.3 million annually for Susquehanna 2 (at 1152 MW, MGN) in 1983 dollars. As Figure 4.2 and Table 4.16 show, levels of capital additions have increased over time. Over the last seven years, the average may have stabilized at about \$26.2/kw-yr, or it may be increasing at about \$2/kw-yr². Some of the trend in the data may result from plant aging, and another portion is undoubtedly related to TMI-inspired regulatory charges, so extrapolating the trend

- 67 -

out is somewhat speculative. If capital additions continue at \$26.2/kw-yr in 1983 Handy-Whitman dollars, and if the nuclear Handy-Whitman index continues to run 1.4 points above the GNP deflation (which I project at 4% in 1984 and 6% thereafter, essentially the same as PP&L), the annual capital additions for both units at Susquehanna would be as shown in Table 4.17, which also shows PP&L's projections of capital additions. The overall upward trend is evident from 1972-78, as well, so any TMI-related effect constitutes a continuation of the trend, rather than a unique event. I therefore assume that capital additions at Susquehanna 2 will continue at recent levels, starting at \$34 million in 1985 and rising at 7.4% annually. PP&L assumes a complicated pattern of additions, starting at \$25 million in 1985, falling dramatically to \$15 million in 1989, and then rising at only about 6% through 2017.

4.6 - INSURANCE

- Q: What would a reasonable estimate be for the cost of insuring Susquehanna 2?
- A: I would assume that PP&L would want to obtain the following insurance:
 - 1. liability coverage of \$160 million, for the 1981
 average premium of \$380,000;
 - 2. property coverage of \$300 million from the commercial pool (ANI/MAERP), at the high-end premium of \$1.75 million;
 - 3. additional property coverage of \$375 million from the self-insurance pool (NML) for the TMI 1 premium of \$1.38 million;
 - 4. replacement power coverage of \$156 million from the self-insurance pool (NEIL) for \$1.69 million;
 - decommissioning accident coverage of one billion dollars for \$2.19 million; and
 - non-accident-initiated premature decommissioning coverage of \$250 million for \$2.42 million.

All values are 1981 dollars from Chernick, <u>et al.</u> (1981), except for the NEIL premium, which is from the NEIL circular

- 69 -

of December 18, 1979. The decommissioning insurances may be from new or existing pools. These coverages have total estimated premiums of \$9.81 million in 1981 dollars, or about \$11.4 million in 1984 dollars (including just GNP inflation). While only the liability and some property coverage are currently required, failure to utilize insurance exposes the ratepayers and stockholders of PP&L to additional costs, which may be greater (on the average) than the insurance premium. Indeed, even with all the insurance listed, PP&L would still not be fully covered in the event of the total and permanent loss of Susquehanna 2.

On a cents-per-kWh basis, \$11.4 million annually is \$9.5/kw or 0.2 cents/kWh.

- Q: How does this figure compare to PP&L's estimate?
- A: PP&L reports (Exhibit Future 1, Schedule D-11) that it expects to spend \$1.913 million for nuclear insurance at Susquehanna 2 in 1985, implying an insurance cost of \$2.126 million for the entire unit. This may well be all that PP&L spends, but the result will be a heavily under-insured plant. Since annualized insurance expenditures at Unit 1 were \$6.5 million in 1983, it is difficult to understand why the insurance cost for Unit 2 should be so much lower. Even the unit 1 1983 expenditures, with inflation to 1984, would still be substantially lower than the full coverage I have
defined.

4.7 - DECOMMISSIONING

- Q: What allowance for decommissioning should be included in the cost of Susquehanna 2 power?
- A: Chernick, et al. (1981) estimates that non-accidental decommissioning of a large reactor will cost about \$250 million in 1981 dollars. This is equivalent to about \$311 million in 1984 dollars, using the nuclear inflation figures discussed above. Assuming that the decommissioning fund accumulates uniformly (in constant dollars) over the life of the plant, and that it is invested in risk-free assets (such as Treasury securities) which earn essentially zero real return, the annual contribution (in 1984 dollars) would be about \$12.4 million per year over a 25 year life, or \$7.8 million annually for a 10 year life.
- Q: How does this compare to PP&L's assumed decommissioning cost?
- A: PP&L uses a traditional engineering estimate of decommissioning costs of \$124 million/unit in 1983 dollars, or about \$131 million in 1984 dollars. Decommissioning cost estimates have been subject to the same sort of errors and escalation as have estimates of nuclear construction and O&M costs. Also, experience with decommissioning has been limited to small units with little operating history.

- 72 -

5 - CONCLUSIONS

- Q: What do you conclude from your examination of the need for, and economics of, Susquehanna 2?
- First, I conclude that Susquehanna 2 will not be required for A: system reliability in the rest of this decade, and probably for much longer. Second, I conclude that Susquehanna 2 does not provide an economic benefit to the ratepayers under normal ratemaking treatment, and will represent a net loss to PP&L's ratepayers (in 1985 and for at least the next six years) if the entire cost of the plant is recovered. Even if PP&L's optimistic cost and operating projections are achieved, and even if operating savings are as large as PP&L predicts, rates would be higher for the rest of the decade to pay for Susquehanna 2, and the cumulative discounted rate effect will represent an increase until near the end of the century. The effects on individual customers will be even more severe, as would the effects if historical patterns in operating cost and reliability continue. Under traditional ratemaking, customers in the 1980's and much (perhaps all) of the 1990's would be heavily taxed to reduce the cost of power in the next century.

Q: What implications do your observations have for ratemaking?

- 73 -

- A: There are two major implications. First, because the benefits and costs under traditional ratemaking would be so out of line, and would tend to fall on very different groups of ratepayers, the cost of the plant should be recovered in a manner which more closely follows the benefits over time. In other words, a substantial phase-in of plant costs is absolutely necessary to produce any semblance of equity. Second, it is doubtful that the entire cost of the second unit will ever be justified by its operating savings for customers, and it is almost certain that the plant will have little or no reliability value.²⁶ Thus, there is substantial question as to whether the entire investment is useful to the ratepayers.
- Q: What are your recommendations to the Commission in this case?
- A: For all the previously stated reasons, I believe that it would be appropriate and equitable for the Department to reject PP&L's phase-in proposal, to indicate an intention to phase Susquehanna 2 into rates so as to (at least roughly) follow the pattern of savings from the plant, and limit initial base-rate cost recovery for Unit 2 to the level of its benefits in each year.

^{26.} Whether or not these benefits materialize later in the plant's life, even PP&L appears to agree that they will not exist within the five-year time frame used in the PP&L phase-in proposal.

Q: How could the goals you suggest be implemented?

A: There are several ratemaking approaches which might be used to reduce the inequities of the Susquehanna 2 rate effects. First, since Susquehanna 2, as a whole, is neither needed for reliabile operation nor beneficial in reducing rates, the Commission may quite reasonably keep the entire unit out of rates. If the shareholders must pay the costs of the unit, it is only fair to allow them the benefits produced by the unit. Thus, both the costs and the operatings savings of Susquehanna 2 could be kept below the line: in effect, Unit 2 would become the world's largest small power producer.²⁷ It is my understanding that PP&L's ECR mechanism would have to be amended to allow the shareholders to retain the actual operating savings from the plant.

Second, the Commission could place the unit above the line, but disallow the equity portion of return on the investment. This would have the effect of allowing recovery of all direct costs for the unit, including the associated debt service and return of the initial investment through depreciation, while denying the shareholders a return on an investment which is not really useful to the ratepayers, who would bear a substantial cost in exchange for receiving the operating

^{27.} This approach is also very similar to treating the initial years of the unit's operation as if it represented pre-commercial generation.

savings.

Third, the Commission could allow no return on the investment at all, but instead allow the company to collect all of the other costs (depreciation, O&M, etc.) and the energy savings. This is an essentially arbitrary way to split the costs between ratepayers and shareholders.

Fourth, the Commission may exclude a mix of capacity from rate base, rather than excluding Susquehanna 2. This is the basic approach the Commission took with respect to Susquehanna 1.

As I noted above, if PP&L is correct in its projections, the unusual ratemaking will remain in effect for a fairly small portion of the life of Susquehanna 2, until it starts to produce real benefits for ratepayers, at which point the Commission will presumably wish to switch to standard ratebase treatment.

- Q: Would equitable ratemaking be achieved by the fourth option you listed above, the repetition of the Commission's treatment of Susquehanna Unit 1 excess capacity, through exclusion of a "slice of the system" from rate base?
- A: That would help somewhat, but would not really solve the equity problems or provide the proper signals to Pennsylvania

- 76 -

The equity problems would not be solved because utilities. Susquehanna 2 would still increase rates to customers in the short run (since the slice-of-the-system is much less expensive than Susquehanna) without commensurate benefits, and regardless of whether the unit is beneficial in the long The signal given by the slice-of-the-system approach is run. that excess MW's of capacity are the problem. In fact, Susquehanna 2 at its current cost would be excessively expensive (at least in the near term) even if its capacity were immediately useful; Susquehanna 2 at a much lower cost would be desirable even if PP&L had a 100% reserve margin. If the Commission wants to control costs to ratepayers from (at least temporarily) uneconomic plants, it can do so more clearly by matching cost recovery to benefits than by excluding a mix of MW's from rate base.

- Q: How could the "slice of the system" approach be improved, so as to be more equitable to ratepayers in this decade?
- A: While this approach is not the most logical response to the problems posed by Susquehanna 2, it can be improved in at least two ways. First, the rather optimistic operating savings projected by PP&L could be guaranteed in some way, such as by denying recovery of any ECR costs due to Susquehanna savings falling below PP&L's expectations. Second, the slice could be a taken as a slice of base-load capacity (e.g., all coal and nuclear capacity), excluding the

- 77 -

less expensive peaking and hydro plants; after all, the problem of Susquehanna is less a matter of too many megawatts than it is a matter of too much expensive base-load capacity.

- Q: Is there a ratemaking treatment which for Susquehanna 2 which you particularly recommend?
- A: Yes. I would suggest that the Commission treat the unit as being in service, but limit annual cost recovery to the projected energy savings for jurisdictional ratepayers, which PP&L projects to be \$136 million in 1985.²⁸ From the ratepayer's point of view, these additional non-fuel base rates would be offset by the reduction in the fuel charges (either in base rates or in the ECR). From the company's viewpoint, fuel revenues will still match fuel costs, leaving \$136 million in revenues towards the costs of Susquehanna 2, or \$111 million after payment for the Allegheny buyback.
- Q: How would this initial value be updated to reflect changes in the value of operatings savings, and in the output of Susquehanna 2?
- A: The Commission could either require PP&L to file a new rate case whenever PP&L wishes to adjust this recovery to fit

^{28.} This figure includes the cost of the Allegheny buyback; after the buyback cost is subtracted, the net savings are \$111 million. If the buyback cost is treated as part of base rates, it is appropriate to use \$136 million as the savings figure.

changed circumstances (as it does with other costs) or it could establish a rate rider mechanism with provision for review and approval of PP&L's projections of operating sayings, and for reconciliation of previous estimates. In either case, PP&L's cost recovery would be dependent on its estimates, and the reconciliation must provide incentives for accurate projections, or at least remove the incentives for overly optimistic projections. The most direct means for accomplishing this would be to offset projection errors in one year by an equal adjustment to recovery in the following year. If, for example, the 1985 energy savings turns out to be \$120 million, rather than the projected \$136 million, the 1986 recovery can be reduced by \$16 million.²⁹ Alternatively, the Commission may wish to damp the annual effects of these errors, by amortising them (with interest) over several years, or by applying them as a reduction in rate base.

If PP&L is correct in its projections of operating savings; of Susquehanna operating costs, reliability, and useful life; and of its own discount rate, PP&L may eventually be made whole for its Susquehanna investment by just collecting the operating savings. If PP&L concludes that Unit 2 is not

^{29.} In order to provide PP&L with an incentive to operate the plant reliably, the Commission may wish to allow the company to retain a portion (such as one half) of the savings from performance in excess of expectations.

likely to pay for itself over the course of its life, it should say so clearly, and ask the Commission to allow it to collect more than the value of the unit. In that situation, the Commission would have to decide whether the additional investments were prudent, used and useful, and whether they should be recovered from the ratepayers, and if so, how and over what time period. This is a decision for the future, however; at this point, it appears to be appropriate to simply limit the Unit 2 cost recovery to its fuel savings.

- Q: What effect would your recommendation have on this rate case?
- A: The effect would be to limit PP&L's annual jurisdictional cost recovery for Susquehanna 2 to \$136 million in 1985. If PP&L's projections prove to be accurate, this would have the same dollar outcome as the below-the-line treatment discussed previously.
- Q: Does this conclude your testimony?
- A: Yes.

6 - BIBLIOGRAPHY

- Chernick, P., Fairley, W., Meyer, M., and Scharff, L., <u>Design, Costs and Acceptability of an Electric Utility</u> <u>Self-Insurance Pool for Assuring the Adequacy of Funds for</u> <u>Nuclear Power Plant Decommissioning Expense</u> (NUREG/CR-2370), U.S. Nuclear Regulatory Commission, December, 1981.
- Easterling, Robert G., <u>Statistical Analysis of Power Plant</u> <u>Capacity Factors</u>(Albuquerque, NM: Sandia Laboratories) 1979.
- 3. Easterling, Robert G., <u>Statistical Analysis of Power Plant</u> <u>Capacity Factors Through 1979</u>, (Albuquerque, NM: Sandia Laboratories), April, 1981.
- Hauseman, J. "Individual Discount Rates and the Purchase and Utilization of Energy-Saving Durables," Bell Journal of Economics, Spring 1979, pages 33-54.
- 5. Komanoff, Charles, <u>Nuclear Plant Performance</u>, <u>Update 2</u>, (New York, NY: Komanoff Energy Associates), 1978.
- 6. Komanoff, Charles, <u>Power Plant Cost Escalation</u>, (New York, NY: Komanoff Energy Associates), 1981.
- 7. Minarick, J.W. and Kukielka, C.A., "Precursors to Potential Severe Core Damage Accidents 1969-79," NUREG/CR-2497, 1982.
- Perl, Lewis J., Testimony before the Pennsylvania Public Utility Commission, on behalf of Philadelphia Electric Company, Docket No. I-80100341, April 9, 1981.

Tables Accompanying the Testimony of Paul Chernick

۲.

ANALYSIS AND INFERENCE, INC. SRESEARCH AND CONSULTING

10 POST OFFICE SQUARE, SUITE 970 - BOSTON, MASSACHUSETTS 02109 - (617)542-0611.

Plant	Blossburg	Warren	Croydon	Richmond
Utility	Pennsylvania Electric Co.	Pennsylvania Electric Co.	Philadelphia Electric Co.	Philadelphia Electric Co.
HH	23.6	53.1	546	730
Total Cost	\$1,950	\$6,034	\$66,790	\$22,255
\$/KH	\$82.63	\$113.63	\$122.33	\$30,49
Initial Year	1971	1972	1974	1970
Ratio of Handy- Whitman Gas Turbine Index				
(1983 : Initial Years	3) 2.40	2.35	2.28	2.47

TABLE 2.1: COST OF PENNSYLVANIA COMBUSTION TURBINES [1]

Average \$/KH across plants, NH weighted \$167.29

\$/KH (1983\$) [2]

Notes: [1] Data from: Energy Information Administration, Historical Plant Cost and Annual Production Expenses for Selected Electric Plants 1982 (DOE/EIA-0455(82) [2] Assumes all capacity installed initial year, and that there have been no capital additions since them. These assumptions overstate

\$267.04

\$279.09

\$75.41

..

the 1983\$ cost.

\$178.14

_. .

TABLE 2.2:	OBJECTI	VE CAPABI	LITY (MW)	WITH NEW	NUCLEAR	UNITS	
		N	umber of	New Nucle	ar Units	·	
Year	0	1	2	3	4	5	
81/82	21880	22445		,		-	
82/83	23127	23526	23924	24323			
83/84		24626	25047	25468	25889		~
84/85			26035	26480	26925	27370	

.

۰.

Source: 8/12/76 NEPOOL Executive Committee Minutes.

Year	Increase In Reserve Per Nuclear Unit (MW)	Nuclear Reduction In Other Capacity Req. (MW)	Firm Load Carried (MW)	Ratio of Firm Load to Nuclear Capacity
	[1]	[2]	[3]	[4]
81/82	565	585	504.3	0.44
82/83	398.7	751.3	647.7	0.56
83/84	421	729	628.4	0.55
84/85	445	705	607.8	0.53
Average				0.52

TABLE 2.3: DERIVATION OF NUCLEAR FIRM LOAD CARRYING CAPACITY

Notes: [1] Calculated from data in Table 2.3.

- [2]: 1150-[1].
- [3]: [2]/1.16; 16% reserves required for 1981/82 and 82/83 with no new nuclear capacity, from 6/24/76 NEPOOL Executive Committee minutes.

•.

1

[4]: [3]/1150.

TABLE 3.1: PP&L PROJECTED FUEL SAVINGS

Year	Susquehanna Fuel Cost	Avoided Fossil Fuel Cost	Differential
	cents/kwh [1]	cents/kwh [2]	cents/kwh [3]
1983	0.5	4.0	3.5
1984	0.5	3.9	3.4
1985	0.6	3.5	2.9
1986	0.6	4.5	3.9
1987	0.4	5.4	4.8
1988	0.7	7.0	6.4
1787	0.8	8.5	7.7
1990	0.8	10.4	9.5
1771	0.9	12.0	11.1
1992	1.1	14.8	13.8
1993	1.2	16.7	15.5
1994	1.3	19.3	17.9
1995	1.5	21.4	17.8
1996	1.7	23.1	21.4 -
1997	1.8	25.1	23.3
1998	2.0	27.3	25.4
1999	2.1	29.6	27.5
2000	2.2	32.5	30.3
2001	2.4	34.8	32.4
2002	2.6	37.5	34.9
2003	2.8	40.3	37.5
2004	J.1	42.7	39.6
2005	3.5	45.5	42.0
2006	3.8	48.1	44.4
2007	4.2	51.0	46.9
2008	4.6	54.0	47.4
2007	4.8	57.2	52.4
2010	5.3	60.7	55.4
2011	5.4	64.1	58.5
2012	5.9	67.6	61.7
2013	6.2	71.6	65.4
2014	6.6	75.7	67.1
2015	7.0	80.0	73.0
2016	7.4	84.4	77.0
2017	7.8	87.4	81.6
2018	8.2	94.5	86.3
2019	8.7	99.9 Apr 7	91.2
2020	9.2	105.3	76.1
2021	9.7 	111.5	101.7
2022	10.3	118.0	107.7
Notes:	[1] Column la page 39, page 40, [2] Columns [[3] Column la	beled "DIR NUC FUEL divided by "PLANT G Attachment 1, IR1PA 11 + [3]. beled "OPER BEN DUE	COST PLANT," EN GWH," 4. TO SUSQ."
		divided by "PLANT C	

page 40, divided by "PLANT GEN GWH, page 40, Attachment 1, IR1PA4.

TABLE 3.2: SUSQUEHANNA UNIT 2 COSTS AND BENEFITS, RETAIL PORTION CASE 1 (PP&L ASSUMPTIONS)

	Capital-Related				Can			Total	Øperating	Net Cusul	Cumulative	Discounted Ative Cumulative
Year	Deprec.	Return	Taxes	Total	Adds	OWN	Decom	Non-Fuel	Savings	Savings	Savings	Savings
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]
1985	14.4	184.2	127.1	327.7	5.3	51.1	2.5	386.6	111.5	-275.1	-275.1	-239.3
1986	16.1	174.3	125.4	315.8	8.5	63.5	2.7	390.4	124.9	-265.5	-540.7	-440.0
1987	18.1	165.9	122.8	306.8	11.2	57.6	2.8	378.4	165.7	-212.7	-753.4	-579.9
1988	20.4	158.4	118.6	297.4	13.4	72.1	3.0	385.9	241.6	-144.4	-897.7	-662.4
1989	22.9	150.7	114.4	287.9	15.2	78.6	3.2	385.0	317.1	-67.9	-965.6	-696.2
1990	25.7	142.8	111.2	279.6	16.9	83.0	3.4	382.8	389.4	6.6	-959.1	-693.4
1991	29.4	137.9	109.4	276.6	19.0	91.4	3.7	390.6	466.9	76.3	-882.8	-664.7
1992	34.9	137.5	111.5	284.0	22.0	107.1	4.2	417.2	603.7	186.5	-696.3	-603.7
1993	39.2	128.8	107.1	275.1	24.1	119.9	4.4	423.6	687.3	263.7	-432.6	-528.7
1994	44.0	119.6	113.8	277.4	26.5	128.7	4.7	437.3	798.8	361.5	-71.1	-439.4
1995	49.4	115.9	113.2	278.5	29.1	142.3	5.0	454.9	885.7	430.8	359.7	-346.8
1996	56.9	114.4	115.3	286.6	32.7	161.3	5.5	486.1	977.9	491.8	851.5	-254.9
1997	65.4	112.3	117.3	295.1	36.7	174.1	5.9	511.8	1089.9	578.1	1429.7	-160.9
1998	75.2	109.3	119.2	303.7	41.1	194.2	6.4	545.3	1213.2	667.9	2097.5	-66.5
1999	86.4	105.3	120.9	312.6	45.9	217.3	6.9	582.7	1345.8	763.1	2860.7	27.3
2000	52.2	100.2	100.6	253.0	52.1	232.6	7.5	545.3	1512.8	967.6	3828.2	130.7
2001	52.2	95.73	96.88	244.8	57.1	253.6	7.9	563.4	1619.4	1056.0	4884.2	228.8
2002	52.2	91.28	93.16	236.7	60.9	279.6	8.3	585.5	1745.7	1160.2	6044.4	322.5
2003	52.2	86.32	89.44	228.5	64.9	294.4	8.8	596.6	1867.0	1270.5	7314.9	411.8
2004	52.2	82.37	85.71	220.3	69.2	322.2	9.3	621.0	1986.4	1365.5	8680.3	495.2
2005	52.2	77.93	82.00	212.1	73.7	355.9	9.9	651.6	2099.6	1448.1	10128.4	572.2
2006	52.2	73.48	78.29	204.0	78.5	372.2	10.4	665.0	2219.3	1554.3	11682.7	644.0
2007	52.2	69.04	74.56	195.8	83.6	406.6	11.0	697.0	2345.8	1648.8	13331.5	710.2
2008	52.2	64.59	70.85	187.7	87.0	447.2	11.6	735.6	2479.5	1744.0	15075.5	771.2
2009	52.2	60.14	67.13	179.5	94.8	465.1	12.3	751.7	2620.8	1869.2	16944.6	827.9
2010	52.2	55.70	63.43	171.3	101.0	507.0	13.0	792.4	2770.2	1977.8	18922.5	880.2
2011	52.2	51.25	59.70	163.2	107.7	539.4	13.7	824.0	2928.1	2104.2	21025.6	928.5
2012	52.2	46.80	55.99	155.0	114.9	576.1	14.5	860.6	3095.0	2234.5	23261.1	973.1
2013	52.2	42.36	52.27	146.8	122.7	614.3	15.4	899.2	3271.5	2372.3	25633.4	1014.4
2014	52.2	37.91	48.56	138.7	131.4	655.5	16.2	941.7	3457.9	2516.2	28149.6	1052.4
2015	52.2	33.47	44.84	130.5	141.0	699.3	17.2	988.0	3655.0	2667.1	30816.6	1087.4
2016	52.2	29.02	41.12	122.4	151.9	746.7	18.1	1039.1	3863.4	2824.2	33640.9	1119.6
2017	52.2	24.57	37.41	114.2	164.7	796.0	19.2	1094.0	4083.6	2989.5	36630.4	1149.3
2018	52.2	20.13	33.69	106.0	177.0	851.2	20.3	1154.5	4316.4	3161.9	39792.3	1176.6
2019	52.2	15.68	29.97	97.9	186.0	912.5	21.4	1217.7	4562.4	3344.7	43137.0	1201.7
2020	52.2	11.22	26.25	89.7	191.6	981.1	22.6	1285.0	4822.4	3537.5	46674.5	1224.8
2021	52.2	6.79	22.55	81.6	193.5	1055.4	23.9	1354.4	5097.3	3742.9	50417.4	1246.1
2022	26.1	2.20	10.29	38.6	79.7	543.0	12.6	693.9	2693.9	2000.0	52417.4	1256.0

.

Ì.

All values in millions of dollars.

Notes on following page.

NOTES FOR TABLE 3.2

- [1] Column labeled "DEPR UNIT 2," pages 35-38, Attachment 1, IRIPA4.
- [2] Column labeled "RETURN UNIT 2," pages 35-38, Attachment 1, IR1PA4.
- [3] Column labeled "TAXES UNIT 2," pages 35-38, Attachment 1, IR1PA4.
- [4] Columns [1] + [2] + [3].
- [5] The sum of columns labeled "DEPR ADD," "RETURN ADD," and "TAXES ADD," pages 35-38, Attachment 1, IR1PA4; divided by 2.
- [6] The sum of columns labeled "DIRECT OWN UNIT 2," "IND NUC FUEL COST UNIT 2," and "NUC FUEL DISP COST UNIT 2," pages 35-38, Attachment 1, IRIPA4.

. •

- [7] Column labeled "DECOM COST UNIT 2," pages 35-38, Attachment 1, IRIPA4.
- [8] Columns [4] + [5] + [6] + [7].
- [9] Column labeled "OPER BEN DUE TO SUSO," page 40, divided by "PLANT GEN GWH," page 40, multiplied by "SUSO 2 GEN GWH," page 40, Attachment 1, IRIPA4; multiplied by .90 (Value of Unit 2 savings/kWh as fraction of plant savings/kWh).
- [10] Columns [9] [8].

[12] Discount rate = 15.0%; from Column [10].

^[11] From Column [10].

TABLE 3.3: SUSQUEHANNA UNIT 2 COSTS AND BENEFITS, RETAIL PORTION CASE 2 (RECENT HISTORICAL CAPACITY FACTORS)

		Capital	-Related									Discounted
Year	Deprec.	Return	Taxes	Total	Cap Adds	OWN	Decom	iotai Non-Fuel	Uperating Savings	Net Savings	Cumulative Savings	Cumulative Savings
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]
1985	14.4	184.2	129.1	327.7	5.3	50.4	2.5	385.9	94.3	-291.6	-291.6	-253.6
1986	16.1	174.3	125.4	315.8	8.5	63.5	2.7	390.4	125.8	-264.6	-556.3	-453.7
1987	18.1	165.9	122.8	306.8	11.2	57.3	2.8	378.1	154.2	-223.9	-780.2	-600.9
1988	20.4	158.4	118.6	297.4	13.4	72.1	3.0	385.9	242.7	-143.3	-923.4	-682.8
1989	22.9	150.7	114.4	287.9	15.2	78.3	3.2	384.6	294.4	-90.2	-1013.6	-727.7
1990	25.7	142.8	111.2	279.6	16.9	82.2	3.4	382.0	333.7	-48.3	-1061.9	-748.5
1991	29.4	137.9	109.4	276.6	19.0	90.5	3.7	389.7	400.2	10.5	-1051.4	-744.6
1992	34.9	137.5	111.5	284.0	22.0	106.1	4.2	416.3	517.4	101.2	-950.3	-711.5
1993	39.2	128.8	107.1	275.1	24.1	118.9	4.4	422.5	589.1	166.6	-783.7	-664.2
1994	44.0	119.6	113.8	277.4	26.5	127.5	4.7	436.2	684.6	248.4	-535.3	-602.8
1995	49.4	115.9	113.2	278.5	29.1	141.2	5.0	453.8	759.1	305.4	-229.9	-537.1
1996	56.9	114.4	115.3	286.6	32.7	160.1	5.5	484.9	838.2	353.4	123.4	-471.1
1997	65.4	112.3	117.3	295.1	36.7	172.8	5.9	510.5	934.2	423.8	547.2	-402.2
1998	75.2	109.3	119.2	303.7	41.1	192.8	6.4	543.9	1039.9	496.0	1043.2	-332,1
1999	86.4	105.3	120.9	312.6	45.9	215.7	6.9	581.1	1153.6	572.4	1615.6	-261.8
2000	52.2	100.2	100.6	253.0	52.1	231.0	7.5	543.6	1295.7	753.1	2368.7	-181.3
2001	52.2	95.73	96.88	244.8	57.1	251.8	7.9	561.7	1388.1	826.4	3195.1	-104.5
2002	52.2	91.28	93.16	236.7	60.9	277.8	8.3	583.7	1496.3	912.6	4107.7	-30.8
2003	52.2	86.82	89.44	228.5	64.9	292.4	8.8	594.6	1600.3	1005.7	5113.4	39.9
2004	52.2	82.37	85.71	220.3	69.2	320.1	9.3	618.9	1702.6	1083.7	6197.1	106.1
2005	52.2	77.93	82.00	212.1	73.7	353.7	9.9	649.4	1799.7	1150.3	7347.4	167.2
2006	52.2	73.48	78.29	204.0	78.5	369.9	10.4	662.7	1902.3	1239.5	8587.0	224.5
2007	52.2	69.04	74.56	195.8	83.6	404.2	11.0	694.6	2010.7	1316.1	9903.0	277.4
2008	52.2	64.59	70.85	187.7	89.0	444.7	11.6	733.0	2125.3	1392.3	11295.3	326.0
2009	52.2	60.14	67.13	179.5	94.8	462.4	12.3	749.0	2246.4	1497.4	12792.8	371.5
2010	52.2	55.70	63.43	171.3	101.0	504.2	13.0	789.5	2374.5	1584.9	14377.7	413.4
2011	52.2	51.25	59.70	163.2	107.7	536.4	13.7	821.0	2509.8	1688.8	16066.5	452.2
2012	52.2	46.80	55.99	155.0	114.9	572.9	14.5	857.4	2652.9	1795.5	17862.0	488.0
2013	52.2	42.36	52.27	146.8	122.7	610.9	15.4	895.9	2804.1	1908.3	19770.3	521.2
2014	52.2	37.91	48.56	138.7	131.4	652.0	16.2	938.2	2963.9	2025.7	21796.0	551.8
2015	52.2	33.47	44.84	130.5	141.0	695.6	17.2	984.3	3132.9	2148.6	23944.6	580.0
2016	52.2	29.02	41.12	122.4	151.9	742.8	18.1	1035.2	3311.5	2276.3	26220.9	606.0
2017	52.2	24.57	37.41	114.2	164.7	791.8	19.2	1089.8	3500.2	2410.4	28631.3	629.9
2018	52.2	20.13	33.69	106.0	177.0	846.8	20.3	1150.1	3699.7	2549.7	31180.9	651.9
2019	52.2	15.68	29.97	97.9	186.0	907.8	21.4	1213.0	3910.6	2697.6	33878.5	672.2
2020	52.2	11.22	26,26	89.7	191.6	976.1	22.6	1280.1	4133.5	2853.5	36732.0	670.8
2021	52.2	6.79	22,55	81.6	193.5	1050.2	23.9	1349.2	4369.1	3019.9	39751.9	708.0
2022	26.1	2.20	10.29	38.6	79.7	560.2	12.6	691.2	2309.1	1617.9	41369.8	716.0

All values in millions of dollars.

• .

Notes: Same as Table 3.2 except as noted below.

[6] Column [6] as defined in Table 3.2 except the column labeled "NUC FUEL DISP COST UNIT 2" is aultiplied by PLC CF, divided by PPL CF. PLC CF from Eq. 3 in Table 4.3.

۰.

[9] Column [9] as defined in Table 3.2 multiplied by PLC CF, divided by PPL CF.

TABLE 3.4: SUSQUEHANNA UNIT 2 COSTS AND BENEFITS, RETAIL PORTION CASE 3 (CONTINUING PAST EXPERIENCE)

		Capital	-Related		_						'	Discounted
Year	Deprec.	Return	Taxes	Total	Cap Adds	O&M	Decom	fotal Non-Fuel	Uperating Savings	Net Savings	Cumulative Savings	Cumulative Savings
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]
1985	14.4	194.0	129.1	337.5	14.6	37.2	5.1	394.4	94.3	-300.1	-300.1	-261.0
1986	16.1	183.5	125.4	325.2	23.3	41.2	5.3	394.9	125.8	-269.1	-569.2	-464.5
1987	18.1	174.8	122.8	315.7	30.7	48.4	5.7	400.5	154.2	-246.3	-815.5	-626.4
1988	20.4	166.9	118.6	305.9	36.8	57.0	6.0	405.7	242.7	-163.1	-978.5	-719.6
1989	22.9	158.8	114.4	296.0	41.7	48.5	6.4	412.6	294.4	-118.1	-1096.7	-778.4
1990	25.7	150.4	111.2	287.2	46.2	81.7	6.8	421.9	333.7	-88.1	-1184.8	-816.5
1991	29.4	145.3	109.4	284.0	51.9	96.2	7.3	439.5	400.2	-39.3	-1224.1	-831.2
1992	34.9	144.9	111.5	291.3	60.3	117.1	8.3	477.0	517.4	40.4	-1183.7	-818.0
1993	39.2	135.7	107.1	282.0	66.0	142.2	8.8	499.1	589.1	90.0	-1093.8	-792.5
1994	44.0	126.0	113.8	283.8	72.4	166.9	9.4	532.6	684.6	152.0	-941.7	-754.9
1995	49.4	122.1	113.2	284.7	79.6	200.7	10.1	575.0	759.1	184.1	-757.6	-715.3
1996	56.9	120.6	115.3	292.8	89.6	243.1	10.9	636.4	838.2	201.9	-555.8	-677.6
1997	65.4	118.3	117.3	301.1	100.5	285.4	11.8	698.9	934.2	235.4	-320.4	-639.3
1998	75.2	115.2	119.2	309.5	112.5	342.6	12.8	777.5	1039.9	262.4	-58.0	-602.2
1999	86.4	111.0	120.9	318.2	125.7	411.9	13.8	869.7	1153.6	283.9	225.9	-567.3
2000	52.2	105.6	100.6	258.4	142.8	484.9	14.9	901.0	1296.7	395.7	621.6	-525.1
2001	52.2	100.9	96.88	250.0	156.4	581.3	15.8	1003.5	1388.1	384.6	1006.2	-489.3
2002	52.2	96.2	93.16	241.6	166.7	700.3	16.7	1125.2	1496.3	371.0	1377.3	-459.3
2003	52.2	91.5	89.44	233.1	177.7	829.0	17.6	1257.5	1600.3	342.9	1720.1	-435.2
2004	52.2	86.8	85.71	224.7	189.4	996.2	18.6	1429.0	1702.6	273.7	1993.8	-418.5
2005	52.2	82.1	82.00	216.3	201.7	1200.4	19.7	1638.2	1799.7	161.5	2155.3	-409.9
2006	52.2	77.4	78.29	207.9	214.8	1424.7	20.8	1868.2	1902.3	34.0	2189.3	-408.4
2007	52.2	72.7	74.56	199.5	228.8	1712.7	22.0	2163.0	2010.7	-152.3	2037.0	-414.5
2008	52.2	68.1	70.85	191.1	243.7	2061.8	23.3	2519.9	2125.3	-394.6	1642.4	-428.3
2009	52.2	63.4	67.13	182.7	259.6	2454.6	24.6	2921.5	2246.4	-675.1	967.3	-448.8
2010	52.2	58.7	63.43	174.3	276.6	2952.1	26.0	3429.0	2374.5	-1054.5	-87.2	-476.5
2011	52.2	54.0	59.70	165.9	294.9	3537.2	27.5	4025.5	2509.8	-1515.7	-1602.9	-511.4
2012	52.2	49.3	55.99	157.5	314.7	4244.3	29.0	4745.6	2652.9	-2092.7	-3695.5	-553.2
2013	52.2	44.6	52.27	149.1	336.1	5095.0	30.7	5610.9	2804.1	-2806.8	-6502.3	-602.0
2014	52.2	39.9	48.56	140.7	359.6	6120.5	32.4	6653.2	2963.9	-3689.3	-10191.6	-657.7
2015	52.2	35.3	44.84	132.3	386.0	7356.0	34.3	7908.6	3132.9	-4775.7	-14967.3	-720.4
2016	52.2	30.5	41.12	123.9	416.0	8845.5	36.2	9421.6	3311.5	-6110.2	-21077.4	-790.2
2017	52.2	25.9	37.41	115.5	450.9	10639.5	38.3	11244.3	3500.2	-7744.0	-28821.4	-867.1
2018	52.2	21.2	33.69	107.1	484.5	12802.7	40.5	13434.7	3699.7	~9735.0	-38556.4	-951.2
2019	52.2	16.5	29.97	98.7	509.1	15410.5	42.8	16061.1	3910.6	-12150.5	~50706.9	-1042.4
2020	52.2	11.8	26.26	90.3	524.6	18555.1	45.2	19215.2	4133.5	-15081.7	-65788.6	-1140.9
2021	52.2	7.2	22.55	81.9	529.7	22345.2	47.8	23004.7	4369.1	-18635.5	-84424.1	-1246.7
2022	26.1	2.3	10.29	38.7	218.2	26772.2	25.3	27054.4	2309.1	-24745.3	-109169.5	-1368.9

All values in millions of dollars.

Notes: Same as Table 3.3 except as noted below.

- [2] Column [2] as defined in Table 3.2 multiplied by 13.15, divided by 12.48.
- [5] Column [5] as defined in Table 3.2 multiplied by present value of PLC Cap Adds, divided by present value of PPL Cap Adds. PPL Cap Adds and PLC Cap Adds from Columns [1] and [2] of Table 4.17. Present value calculated with 1985-2022 data discounted at 15.0%.
- [6] Column [6] as defined in Table 3.3 except the column labeled "DIRECT OWN UNIT 2" is replaced by Column [5] from Table 4.15.
- [7] Column [7] as defined in Table 3.2 multiplied by 2.

TABLE 3.5: SUSQUEHANNA 2 RETAIL RATE EFFECTS CASE 1 (PP&L ASSUMPTIONS)

Year	Susquehanna 2 Net Savings	Retail Sales	Reduction in Rates	Savings for Typical Customer {Residential}	Cumulative Savings	Discounted Cumulative Savings
	\$ million [1]	6WH [2]	cents/kwh [3]	\$/year [4]	[5]	[6]
1985	-275.1	23003	-1.2	(\$95.69)	{\$95.69}	(\$83.21)
1986	-265.5	23772	-1.1	(\$89.36)	(\$185.05)	(\$150,78)
1987	-212.7	24574	-0.9	(\$69.24)	(\$254.29)	(\$196.30)
1988	-144.4	25477	-0.6	(\$45.33)	(\$299.62)	(\$222.22)
1989	-67.9	26029	-0.3	(\$20.87)	(\$320.50)	(\$232.60)
1990	6.6	26614	.0	\$1.97	(\$318.52)	(\$231.75)
1991	76.3	27278	0.3	\$22,38	(\$296.14)	(\$223, 33)
1992	186.5	27942	0.7	\$53.39	(\$242.75)	(\$205.88)
1993	263.7	28605	0.9	\$73.76	(\$167.00)	(\$184.92)
1994	361.5	29199	1.2	\$99.04	(\$69.96)	(\$160.43)
1995	430.8	29792	1.4	\$115.68	\$45.72	(\$135.57)
1996	491.8	30386	1.5	\$129.49	\$175.21	(\$111.37)
1997	578.1	30979	1.9	\$149.30	\$324.51	(\$87.10)
1998	667.9	31573	2.1	\$169.23	\$493.73	(\$63.19)
1999	763.1	32206	2.4	\$189.57	\$683.30	(\$39.89)
2000	967.6	32830	2.9	\$235.78	\$919.08	(\$14.69)
2001	1056.0	33464	3.2	\$252.44	\$1,171.52	\$8.77
2002	1160.2	34098	3.4	\$272.19	\$1,443.71	\$30.76
2003	1270.5	34723	3.7	\$292.71	\$1,736.43	\$51.33
2004	1365.5	35400	3.9	\$308.58	\$2,045.01	\$70.18
2005	1448.1	36090	4.0	\$320,99	\$2,366.00	\$87.24
2006	1554.3	36794	4.2	\$337.95	\$2,703.95	\$102.85
2007	1648.8	37511	4.4	\$351.64	\$3,055.59	\$116.98
2008	1744.0	38243	4.6	\$364.82	\$3,420.41	\$129.72
2009	1869.2	38988	4.8	\$383,53	\$3,803.94	\$141.37
2010	1977.8	39749	5.0	\$378.07	\$4,202.01	\$151.89
2011	2104.2	40524	5.2	\$415.39	\$4,617.40	\$161.43
2012	2234.5	41314	5.4	\$432.68	\$5,050.08	\$170.07
2013	2372.3	42120	5.6	\$450,58	\$5,500.66	\$177.90
2014	2516.2	42941	5.9	\$468.77	\$5,969.43	\$184.98
2015	2667.1	43778	6.1	\$487.37	\$6,456.81	\$191.38
2016	2824.2	44632	6.3	\$506.23	\$6,963.04	\$197.16
2017	2989.6	45502	6.6	\$525.61	\$7,488.65	\$202.38
2018	3161.9	46390	6.8	\$545.28	\$8,033.93	\$207.09
2019	3344.7	47294	7.1	\$565.77	\$8,599.70	\$211.34
2020	3537.5	48216	7.3	\$586.93	\$9,186.63	\$215.17
2021	3742.9	49157	7.6	\$609.14	\$9,795.77	\$218.63
2022	2000.0	50115	4.0	\$319.27	*********	\$220.20

Notes: [1] From Table 3.2.

12] From Table II, Exh. JOB-1, (Total - 86% of other) extrapolated at 1.95% 2003-2022.

....

[3] Columns [1]/[3].

[4] Using 8000 kwh/year.

[5] From Column [4].

[6] Discount rate = 15.02; from Column [4].

TABLE 3.6: SUSBUEHANNA 2 RETAIL RATE EFFECTS CASE 2 (RECENT HISTORICAL CAPACITY FACTORS)

Year	Susquehanna 2 Net Savings	Retail Sales	Reduction in Rates	Savings for Typical Customer (Residential)	Cumulative Savings	Discounted Cumulative Savings
	\$ million [1]	6WH [2]	cents/kwh [3]	\$/year [4]	[5]	[6]
1985	-291.6	23003	-1.3	(\$101.42)	(\$101.42)	(\$88.19)
1986	-264.6	23772	-1.1	(\$89.06)	(\$190.48)	(\$155.53)
1987	-223.9	24574	-0.9	(\$72.89)	(\$263.37)	(\$203.46)
1988	-143.3	25477	-0.6	{\$44.99}	(\$308.36)	(\$229.18)
1989	-90.2	26029	-0.3	{\$27,72}	(\$336.08)	(\$242.96)
1990	-48.3	26614	-0.2	(\$14.51)	(\$350.59)	(\$249.24)
1991	10.5	27278	.0	\$3.07	(\$347.52)	(\$248.08)
1992	101.2	27942	0.4	\$28.96	(\$318.56)	(\$238.62)
1993	166.6	28605	0.5	\$46.58	(\$271.98)	(\$225.37)
1994	248.4	29199	0.9	\$68.07	(\$203.91)	(\$208.55)
1995	305.4	29792	1.0	\$82.00	(\$121.91)	(\$190,92)
1996	353.4	30386	1.2	\$93.03	(\$28,88)	(\$173.54)
1997	423.8	30979	1.4	\$109.43	\$80.55	(\$155.75)
1998	496.0	31573	1.6	\$125.67	\$206.22	(\$137.99)
1999	572.4	32206	1.8	\$142.19	\$348.42	(\$120.51)
2000	753.1	32830	2.3	\$183.51	\$531.93	(\$100.90)
2001	826.4	33464	2.5	\$197.56	\$729.49	(\$82.54)
2002	912.6	34098	2.7	\$214.11	\$943.60	(\$65.24)
2003	1005.7	34723	2.9	\$231.71	\$1,175.31	(\$48.96)
2004	1083.7	35400	3.1	\$244.91	\$1,420.22	(\$34.00)
2005	1150.3	36040	3.2	\$254.98	\$1,675.21	(\$20.45)
2006	1239.5	36794	3.4	\$269.51	\$1,944.72	(\$8.00)
2007	1316.1	37511	3.5	\$280.68	\$2,225.40	\$3.28
2008	1392.3	38243	3.6	\$291.25	\$2,516.65	\$13.45
2009	1497.4	38788	3.8	\$307.26	\$2,823.91	\$22.79
2010	1584.9	39749	4.0	\$318.98	\$3,142.90	\$31.21
2011	1688.8	40524	4.2	\$333.40	\$3,476.30	\$38.87
2012	1795.5	41314	4.3	\$347.68	\$3,823.97	\$45.81
2013	1908.3	42120	4.5	\$362.44	\$4,186.42	\$52.11
2014	2025.7	42941	4.7	\$377.40	\$4,563.82	\$57.81
2015	2148.6	43778	4.9	\$392.64	\$4,956.45	\$62.97
2016	2276.3	44632	5.1	\$408.01	\$5,364.46	\$67.63
2017	2410.4	45502	5.3	\$423.78	\$5,788.24	\$71.83
2018	2549.7	46390	5.5	\$439.70	\$6,227.94	\$75.63
2019	2697.6	47294	5.7	\$456.30	\$6,684.24	\$79.06
2020	2853.5	48216	5.9	\$473.44	\$7,157.68	\$82.15
2021	3019.9	49157	6.1	\$491.48	\$7,649.16	\$84.94
2022	1617.9	50115	3.2	\$258.27	\$7,907.44	\$86.21

ı.

÷

.

Notes: [1] From Table 3.3.

12] From Table II, Exh. JDB-1, (Total - 86% of other) extrapolated at 1.95% 2003-2022.

- [3] Columns [1]/[3].
- [4] Using 8000 kwh/year.

[5] From Column [4].

[6] Discount rate = 15.02; from Column [4].

Year	Susquehanna 2 Net Savings	Retail Sales	Reduction in Rates	Savings for Typical Customer (Residential)	Cumulative Savings	Discounted Cumulative Savings
	\$ sillion	GKH	cents/kwh	\$/year		
	E13	[2]	[3]	[4]	[5]	[6]
1985	-300.1	23003	-1.3	(\$104.37)	(\$104.37)	(\$90.76)
1986	-269.1	23772	-1.1	(\$90.57)	{\$194.94}	(\$159.24)
1987	-246.3	24574	-1.0	(\$80.17)	(\$275.12)	(\$211.96)
1988	-163.1	25477	-0.6	(\$51,20)	(\$326.32)	{\$241.24}
1989	-118.1	26029	-0.5	(\$36.30)	(\$362.63)	(\$259.28)
1990	-88.1	26614	-0.3	{\$26.49}	(\$389.12)	(\$270.74)
1991	-39.3	27278	-0.1	(\$11.52)	(\$400.64)	(\$275.07)
1992	40.4	27942	0.1	\$11.56	(\$389.08)	{\$271,29}
1993	90.0	28605	0.3	\$25.16	(\$363.92)	(\$264.14)
1994	152.0	29199	0.5	\$41.66	(\$322.27)	(\$253.84)
1995	184.1	29792	0.6	\$49.44	(\$272.83)	(\$243.22)
1996	201.7	30386	0.7	\$53.15	(\$219.68)	(\$233.28)
1997	235.4	30979	0.8	\$60.78	(\$158.90)	(\$223.40)
1998	262.4	31573	0.8	\$66.49	(\$92.41)	(\$214.01)
1999	283.9	32206	0.9	\$70.51	(\$21,90)	(\$205.34)
2000	395.7	32830	1.2	\$96.44	\$74.54	(\$195.04)
2001	384.6	33464	1.1	\$91.94	\$166.48	(\$186.49)
2002	371.0	34098	1.1	\$87.05	\$253.53	(\$179.46)
2003	342.9	34723	1.0	\$79.00	\$332.53	(\$173.91)
2004	273.7	35400	0.8	\$61.84	\$394.37	(\$170.13)
2005	161.5	36090	0.4	\$35.81	\$430.18	(\$168.23)
2006	34.0	36794	0.1	\$7.40	\$437.57	(\$167.88)
2007	-152.3	37511	-0.4	(\$32.48)	\$405.09	(\$169.19)
2008	-394.6	38243	-1.0	(\$82.54)	\$322.55	(\$172.07)
2009	-675.1	38988	-1.7	(\$138.52)	\$184.03	(\$176.28)
2010	-1054.5	39749	-2.7	(\$212.24)	(\$28.21)	(\$181.87)
2011	-1515.7	40524	-3.7	(\$299.22)	(\$327,43)	(\$188,76)
2012	-2092.7	41314	-5.1	(\$405.22)	(\$732.65)	(\$196.85)
2013	-2806.8	42120	-6.7	(\$533.10)	(\$1.265.75)	(\$206.11)
2014	-3689.3	42941	-8.6	(\$687.32)	(\$1,953.07)	(\$216.49)
2015	-4775.7	43778	-10.9	(\$872,70)	(\$2,825,78)	(\$227.96)
2015	-6110.2	44632	-13.7	(\$1.095.21)	(\$3.920.98)	(\$240.46)
2017	-7744.0	45502	-17.0	(\$1.361.52)	(\$5,282.50)	(\$253.98)
2018	-9735.0	46390	-21.0	(\$1,678,82)	(\$6.961.33)	(\$268.48)
2019	-12150.5	47294	-25.7	(\$2.055.30)	(\$9.016.63)	(\$283.91)
2020	-15081.7	48216	-31.3	(\$2,502.33)	(\$11,518.96)	(\$300.25)
2021	-18635.5	49157	-37.9	(\$3.032.84)	(\$14.551.80)	(\$317,47)
2022	-24745.3	50115	-49.4	(\$3,950.15)	(\$18,501.95)	(\$336.97)

TABLE 3.7: SUSBUEHANNA 2 RETAIL RATE EFFECTS CASE 3 (CONTINUING PAST EXPERIENCE)

Notes: [1] From Table 3.4.

. ..

1

- [3] Columns [1]/[3].
- [4] Using 8000 kwh/year.

[5] From Column [4].

[6] Discount rate = 15.0%; from Column [4].

^[2] From Table II, Exh. JOB-1, (Total - 86% of other) extrapolated at 1.95% 2003-2022.

TABLE 3.8: SUMMARY OF COST-EFFECTIVENESS MEASURES

	Case 1 Savings for			Case 2 Savings for		Case 3 Savings for Tunings 1 Surings		
	Total	(Residential)[1]	Total	(Residential)[1]	Total	(Residential)[1]		
Table	3.2	3.5	3.3	3.6	3.4	3.7		
Crossover Year	1990	1990	1991	1991	1992	1992		
Breakeven Year	1995	1995	1996	1997	1999	2000		
Discounted Breakeven Year	1999	2001	2003	2007	Never	Never		
Cumulative Savings at Crossover	(\$959.1) million	(\$318.52)	(\$1,051.4) million	(\$347.52)	(\$1,138.7) million	(\$389.08)		
Terminal Biscounted Savings	\$1,256.0 million	\$220.20	\$716.0 million	(\$86.21)	(\$1,368.9) million	(\$336.97)		

..

Notes: [1] Effect on 8000 kWh/year ratepayer.

..

Equation:	2.1	2.2	2.3	2.4	
Coefficients:					
Constant	41.3	44.4	44.4	39.3	
AGE	7.1	6.2			
AGES			5.0	5.2	
MGN/100	-0.9	-0,8	-0.6		
NGNCE (1152 NW)					
at year=					
/ 2	45.1	47.5	47.5	49.7	
-	52.2	53.8	52.5	54.9	
4	59.3	60.0	57.5	60.1	
5	59.3	60.0	62.5	45.3	
NGN7-FE (DER # 1 AA)	17 - 1096	A MW1			
at vests	12 - 1070	1 1197			
4 C / C L I - 7	45.4	49 0	47 9	49 7	
7	577	51 7	57 0	-1 	
5 8	52.; EQ Q	20.4	57.0	20 1	
7	37.0 ED D	10.4	J/.0 / n n	00.1 /E 7	
ن ا	47.0	SV.4	01.0	0J.7	
DERCF (1050 NW)					AVERAGE
at year=					
. 2	47.5	50.2	49.9	51.9	49.9
3	55.1	56.6	55.2	57.3	56.0
4	62.5	63.1	60.4	62.8	62.2
5	62.5	63.1	65.6	68.2	64.8

.

TABLE 4.1: EASTERLING BWR CAPACITY FACTOR EQUATIONS AND RESULTS FOR SUSQUEHANNA 2: 1152 NW

TABLE 4.2: BWR CAPACITY FACTOR REGRESSIONS

		Equat =======	ion 1	Equat ======	ion 2	Equat	ion 3
		Coef	t-stat	Coef	t-stat	Coef	t-stat
CONSTANT		70.75%	7.2	70.222	7.2	76.86%	8.4
SIZE [1]		-0.03%	-2.7	-0.037	-2.7	-0.032	-3.0
AGE5 [2]		4.442	4.3	4.552	4.7	3.571	3.8
REFUEL [3]		-8.70%	-3.7	-8.40%	-3.6	-10.192	-4.6
GT1000 [4]		11.25%	2.3	11.152	2.3	14.732	3.2
YEAR INDICATORS	[5]						
	1979	2.86%	0.7				
	1980	-4.76%	-1.2				
	1981	-7.67%	-2.0				
	1982	-9.39%	-2.3	a de 13			
	1983	-12.47%	-3.1				
post-	-1979 [6]			-9.29%	-3.7	-9.541%	-4.0
ADJUSTED R			0.177		0.179		0.202
F STATISTIC			5.6		9.3		10.5
OBSERVATIONS (7	']		192		192		189

Notes:

- [1] SIZE = Design Electrical Rating (DER) in NW.
- [2] AGE5 = minimum of Age (years from COD to middle of current year), or 5.

:

- [3] Refuel=number of refuelings in year (usually 0 or 1).
- [4] GT1000 = 1, if SIZE > 1000, 0 otherwise.
- [5] Indicator=1 in this year, 0 otherwise.
- [6] 1980 or later.
- [7] Full calendar years of BWR operation, >300 MW, 1974-83.
- [8] Excludes Browns Ferry 1975-76.

		Equation 1	Equation 2	Equation 3
YEAR	Value of REFUEL			
1985	0	39.59%	42.89%	50.46%
1986	1	35.33%	39.05%	43.85%
1987	0	48.46%	52.00%	57.61%
1988	1	44.20%	48.15%	51.00%
1989	l	48.63%	52.70%	54.57%
1990+	0.67	53.72%	57.75%	59.72%

TABLE 4.3: BWR CAPACITY FACTOR PROJECTIONS FOR SUSQUEHANNA 2

Notes: All projections assume 1983 conditions continue. Results of Equation 1 would be 8.9% higher at average historical conditions, and results of Equations 2 and 3 would be 5% higher. TABLE 4.4: COMPARISON OF CAPACITY FACTOR PROJECTIONS

Calendar Years of Experience

	1 2	34	56	7+
Predicted				
Capacity Factors:	[1]			
PP&L: [2]	58.5% 54.6%	59.12 64.72	70.02 70.02	70.02
Easterling: [3]	49.92 49.92	56.01 62.21	64.82 64.83	64.87

	As of: 31-Nay-84	Unit Ye	ars of	Experi	ence in	each C	alenda	r Year
Unit	COD	1	2	3	4	5	6	7+
Browns Ferry 1	01-Aug-74	0.42	1.00	1.00	1.00	1.00	1.00	4.41
Browns Ferry 2	01-Mar-75	0.84	1.00	1.00	1.00	1.00	1.00	3.42
Browns Ferry 3	01-Har-77	0.84	1.00	1.00	1.00	1.00	1.00	1.41
Peach Bottom 2	05-Jul-74	0.49	1.00	1.00	1.00	1.00	1.00	4.41
Peach Bottom 3	23-Dec-74	0.02	1.00	1.00	1.00	1.00	1.00	4.41

Unit	Original DER (MW)	Actual	PP&L	Easterling
Browne Forry \$ 153	1098	[4] 50 37	LL 37	<u> </u>
Browne Farry 7	1098	57 47	45 57	5115X
Browns Forry 3	1098	57.87	LA. 37	59.57
Prach Bottom 7	10/5	60.97	44.27	61.47
Peach Rottom 3	1065	61.47	66.62	67.02
	1000			
Average [6]		56.72	65.92	61.1Z

Notes: [1] First partial year

- [2] From: Attachment 1, IR I PA4
- [3] DERCF Averages from Table 4.1
- [4] Cumulative Net Elec. Energy/ Report Period Hours/ DER; From NRC Gray Book, June, 1984.
- [5] Browns Ferry Net DER from Komanoff (1981)
- [6] Neighted by experience.

TABLE 4.5: HISTORICAL CAPACITY FACTORS (DER) Nuclear Units Similar in Characteristics to Susquehanna

	DER first CAPACITY FACTOR BY CALENDAR YEAR [2] NET full										
UNIT	[3]	year	1	2	3	4	5	6	7	8	9
BROWNS FERRY 1	1098	75	14.02	13.52	52.42	60.51	77.91	62.9%	45.8%	81.92	22.6%
BROWNS FERRY 2	1098	76	16.21	6 4. 72	57.7%	77.42	58.31	77.71	46.32	66.42	
BROWNS FERRY 3	1098	78	57.71	57.02	71.92	65.12	50.91	56.12			
PEACH BOTTON 2	1065	75	54.5%	59.5%	43.12	72.81	91.9%	46.42	71.12	51.42	47.7%
PEACH BOTTON 3	1065	75	56.62	64.7%	51.22	74.72	65.4Z	77.32	33.62	91.5I	26.02
AVERAGES [1] per year: cumulative:	1085		 56.32	61.5Z year	55.3Z s 1-4:	70.1Z 61.3Z	68.91	64.12	49.27 yea	.72.8% rs 5+:	32.11 59.52
ADJUSTMENT FOR	THE BRO	INS FERRY	FIRE [4]								
Browns Ferry de uni deviation/un	viation t-years it-year	[4]	82.32	48.07 41 3.27							
ADJUSTED AVERAG per year: [5] cumulative: [6]	E		53 . 1I	58.3Z year	52.12 5 1-4:	66.9I 58.1I	65.7%	60.9X	46.0% yea	69.6% 875 5+:	28.91 56.31

Notes: [1] Values for years 1 and 2 for Browns Ferry 1, and for year 1 for Browns Ferry 2 are excluded from average.

[2] Computed from NRC-reported net output and original DER.

[3] Browns Ferry DER from Komanoff (1981).

• .

- [4] 2 = 56.3% 14.0% 16.2%, and 61.5%-13.5%, resp.
- [5] Simple averages minus Browns Ferry deviation per unit/year.
- [6] Cumulative (unadjusted) averages minus Browns Ferry deviation per unit-year.

. .

.*	- Eaf													
	EAF						*						*	
Calvert F							76.0	89.2	65.0	61.2	54.4	60.0	79.3	69.6
Cliffs 1	CF						76.0	85.0	64.8	60.7	54,4	58.8	79.3	69.6
EAF-	-CF						0.0	4.2	0.2	0.5	0.0	1.2	0.0	0.0
Calvert	EAF								80.4	67.8	71.2	89.6	72.4	64.9
Cliffs 2	CF								80.4	67.8	71.2	83.0	70.3	64.9
EAF	-CF								0.0	0.0	0.0	6.6	2.1	0.0
Three Mile F	EAF					79.2	77.2	60.4	76.2	79.2	12.4	0.0	0.0	0.0
Island 1	CF					79.2	77.2	60.4	76.2	79.2	12.4	0.0	0.0	0.0
EAF	-CF					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Peach	EAF					76.5	54.5	59.9	43.4	73.4	92.2	47.5	72.8	54.1
Botton 2	CF					76.5	54.5	59.7	43.4	72.8	91.9	46.8	71.1	51.6
EAF	-CF					0.0	0.0	0.2	0.0	0.6	0.3	0.8	1.7	2.5
Peach I	EAF						56.6	66.0	51.3	75.8	66.4	77.3	34.0	93.0
Botton 3	CF						56.5	64.7	51.3	74.3	65.5	77.3	34.0	91.5
EAF-	-CF						0.0	1.3	0.0	1.0	0.9	0.0	0.0	1.5
Salem 1	EAF								42.4	47.9	21.8	63.7	67.7	43.1
	CF								42.4	47.6	21.8	59.4	64.8	43.0
EAF	-CF								0.0	0.3	0.0	4.3	2.9	0.1
Salem 2 H	EAF												75.0	81.7
	CF												75.0	81.3
EAF	-CF												0.0	0.6
Øyster	EAF 7	76.6	78.5	76.3	63.3	64.8	55.3	67.6	57.1	70.1	81.0	34.4	46.2	56.6
Creek	CF 7	16.6	78.0	76.3	63.0	64.7	55,3	67.5	57.1	64.0	80.1	34.3	46.2	35.4
EAF	-CF	0.0	0.5	0.0	0.3	0.1	0.0	0.0	0.0	6.1	0.9	0.1	0.0	21.2

. •

÷

.

TABLE 4.6: CONPARISON OF CAPACITY FACTOR TO EQUIVALENT AVAILABILITY FACTOR PJN NUCLEAR UNITS

Average

(EAF-CF)

Source: Electric Power Research Institute, Nuclear Unit Operating Experience: 1980-1982 Update; April 1984, Appendix F. (EPRI NP-3480)

1.0

TABLE	4.7:	PENNSYLVANIA POWER & LIGHT COMPANY
		Calculation of Composite Cost Rate of Long-Term
		Debt, Susquehanna 2 Construction Period

lst Mortgage Bonds (1)	ፄ to Total	Effective Int. Rate	Avg. Wgtd. Cost Rate
9-7/8% Series due 1985	1 . 27	10.12	0.13
15% Series due 1986	0.64	15.15	0.10
14-3/4% Series due 1986	1.91	14.86	0.28
16-1/2% Series due 1986-90	3.54	16.63	0.59
16-1/2% Series due 1987-91	1.99	16.62	0.33
12-1/8% Series due 1989-93	1.91	12.23	0.23
14% Series due 1990	4.78	14.15	0.68
16-1/8% Series due 1992	3.82	16.45	0.63
9-1/4% Series due 2004	3.06	9.30	0.28
9-3/4% Series due 2005	4.78	9.91	0.47
9-3/4% Series due 2005	3.82	9.86	0.38
8-1/4% Series due 2006	5.73	8.34	0.48
8-1/2% Series due 2007	3.82	8.67	0.33
15-5/8% Series Due 2010	3.82	15.92	0.61
13-1/4% Series due 2012	3.82	13.55	0.52
13-1/8% Series due 2013	4.78	13.34	0.64
13-1/2% Series due 1994	4.78	13.72	0.66
14% Series due 1994	4.78	14.18	0.68
14% Series due 1995	4.78	14.18	0.68
7-7/8% Series due 2000	0.15	8.11	0.01
8-1/8% Series due 2006-2010	0.61	8.34	0.05
11-1/4% Series due 2002	0.57	11.62	0.07
11-1/2% Series due 2012	2.1	11.85	0.25
10-5/8% Series due 2014	1.44	10.96	0.16

72.7 %

. .

12.68 %

Notes: (1) Data from Schedule B-6, Exhibit Future 1.

	<pre>% to Total (1)</pre>	Effective Cost Rate	Weighted Cost Rate
Series Preferred			
4.50% 9.24% 8.00% 7.75% 8.00%, Second 7.50% 8.25% 8.25% 8.75% 10.75% 11.00%, Adjustable 11.00%	5.44 6.46 4.62 4.93 1.03 1.54 5.13 6.16 2.72 1.54 2.67 1.54	5.03 9.47 8.06 7.80 8.06 7.54 8.29 8.82 10.83 11.06 11.05 11.33	0.27 0.61 0.37 0.38 0.08 0.12 0.43 0.54 0.29 0.17 0.30 0.17
14.00%	3.49	14.10	0.49
Preference			
\$13.00 \$11.00 \$11.60 \$ 8.625 \$15.00 \$13.00, Second \$13.68	1.63 3.93 5.13 5.23 5.13 5.13 5.13 5.13	13.53 11.40 12.36 8.68 16.10 13.90 14.65	0.22 0.45 0.63 0.45 0.83 0.71 0.75
Total Preferred and Preference Stock	78.58 %		10.54 %

TABLE 4.8: PENNSYLVANIA POWER & LIGHT COMPANY Composite Cost Rate of Preferred and Preference Stock, Susquehanna 2 Construction Period

Notes: (1) Data from Schedule B-7, Exhibit Future 1.

TABLE 4.9: COMPOSITE COST OF CAPITAL, SUSQUEHANNA 2 CONSTRUCTION PERIOD

···	Return	Capitali- zation	Embedded Cost	Return
Long-Te	erm Debt	47.30%	12.68%	6.00%
Preferi	ed & Preference	17.70%	10.54%	1.87%
Common	Equity	35.00%	15.10%	5.29%
Total		100.00%		13.15%

.•

TABLE 4.10: MARGINAL COMPOSITE COST OF CAPITAL, 1985 PENNSYLVANIA POWER AND LIGHT

Return	Capitali- zation	Embedded Cost	Return
Long-Term Debt	47.30%	14.18%	6.71%
Preferred & Preference	17.70%	14.65%	2.59%
Common Equity	35.00%	15.10%	5.29%
Total	100.00%		14.59%

:

.

									tax				
Debt					50.07			13.02	6.3	17	rate	50.07	
Equity					50.0%			16.0%	8.()7			
Weighted	Average								14.50)%			
Weighted	Average	ŧ	50%	Tax	Effect	on	Equity:		22.50)7			
Weighted	Average	-	50%	Tax	Effect	on	Debt:		11.2	5%			

11.25%

1000

Year	Cash	Deprec. at 10%	Rate-making Return + Taxes	Total	Year-end Ratebase
0	1000				1000
1		100	225.0	325.0	900
2		100	202.5	302.5	800
3		100	180.0	280.0	700
4		100	157.5	257.5	600
5		100	135.0	235.0	500
6		100	112.5	212.5	400
7		100	90.0	190.0	300
8		100	67.5	167.5	200
9		100	45.0	145.0	100
10		100	22.5	122.5	0
Present Value at:					
14.50%	1000			1269	
22.507	1000			1000	

1000 1417

•.

TABLE 4.12: NON-FUEL OWN AND CAPITAL ADDITIONS DATA

			Total	Cost	1983	/HH-yr	0&M -	O&M -F	New Unit	2nd Unit
Plant	Yr	Rating	Cost	Increase	\$		Fuel	1983 \$	Date	Same Year
Arkansas 1	74	902	233027				0		19-Dec-74	
Arkansas 1	75	902	238751	5724	10407	11.54	4109	7044		
Arkansas 1	76	902	242204	3453	5962	6.61	6015	9801		
Arkansas 1	77	902	247069	4865	7997	8.87	8379	12901		
Arkansas 1	78	902	253994	6925	10259	11.37	12125	17381		
Arkansas I	79	902	268130	14136	18641	20.67	18923	24969		
Arkansas 1	80	NA	NA				NA	NA	26-Mar-80	
Arkansas 182	81	1845	916567				54422	60136		
Arkansas 1%2	82	1845	927141	10574	11034	5.98	54496	56801		
Arkansas 142	83	1853	935827	8686	8686	4.69	64928	64928		
Reaver Valley	76	923	599697				1777	2895	30-Sep-76	
Reaver Valley	77	923	598715	-981	-1525	-1.65	14692	22621		
Beaver Valley	78	923	582408	-16308	-23883	-25.88	22681	32514		
Reaver Valley	79	923	576367	-6041	-8067	-8.74	22907	30225		
Reaver Valley	80	923	647575	71208	87849	95.18	34771	42023		
Reaver Valley	81	924	671283	23708	26909	29.12	35838	39501		
Reaver Valley	82	923	748515	77232	80791	87.53	49144	51223		
Beaver Valley	83	923	803564	55049	55049	59.64	65738	65738		
Big Rock Point	63	54	14412				645	1941	15-Dec-63	
Big Rock Point	64	54	14349	-63	-221	-4.10	666	1973		
Big Rock Point	65	75	13750	-599	-2105	-28.07	715	2073		
Big Rock Point	66	75	13793	43	149	1.99	763	2143		
Big Rock Point	67	75	13837	44	146	1,94	1088	2962		
Big Rock Point	68	75	13925	89	287	3.82	865	2260		
Big Rock Point	69	75	13958	32	96	1.29	933	2318		
Big Rock Point	70	75	14324	366	1023	13.64	1062	2504		
Big Rock Point	71	75	14554	230	593	7.91	1256	2843		
Big Rock Point	72	. 75	14731	177	432	5.76	1412	3045		•
Big Rock Point	73	5 75	14815	5 84	195	2.60	1586	3234	ļ	
Big Rock Point	74	75	16012	1197	2415	32,20	2263	4240		
Big Rock Point	75	5 75	16583	7 575	1034	13.79	258-	443()	
Big Rock Point	78	75	22907	6320	10702	142.70	3183	5186	Ļ	
Big Rock Point	7	7 75	2397	1064	1668	22.24	512	5 7891		
Big Rock Point	7{	8 75	24409	438	639	8.52	3645	5 5225	ł	
Big Rock Point	7'	75	2701-	2605	3473	46.31	923	2 12181		
Big Rock Point	8() 75	27262	2 248	304	4.06	8404	10163	ţ	
Big Rock Point	8	1 75	3335	6 6094	6863	91.51	1297	0 14332	2	
Big Rock Point	82	2 75	37068	3 3712	3862	51.49	15513	5 16169	?	
Big Rock Point	8	3 75	3938	2 2314	2314	30.85	1641	6 16417	5	
Browns Ferry 142	7	5 2304	512653	3			662	5 11358	1 01-Aug-7	1 01-Mar-75
Browns Ferry 1&2	7	6 2304	55235	7 39704	66749	28.97	1610	4 2623'	7 .	
Browns Ferry 1,2,	3 7	7 3456	85332	5			1930	5 29723	5 01-Mar-7	7
Browns Ferry 1,2,	37	8 3456	88599	1 32666	47072	13.62	4592	1 6582	?	
Browns Ferry 1,2,	37	9 3456	88835	0 2359	3092	0.89	5558	8 73347	7	
Browns Ferry 1,2,	38	0 3456	89042	8 2078	2485	0.72	6696	9 8093	5	
Browns Ferry 1,2,	38	1 3456	89271	5 2287	2503	0.72	8546	9 94443	3	
Browns Ferry 1,2,	38	2 3456	91551	4 22799	23404	6.77	9227	1 9617-	4	
Browns Ferry 1,2,	3 8	3						4)	
Brunswick 2	7	5 866	38224	6			447	3 766	8 03-Nov-7	5
Brunswick 2	7	6 866	38911	8 6872	11553	13.34	1051	8 1713	3	

i
• •

			Total	Cost	1983	/HH-yr	0&N -	O&N -F	New Unit	2nd Unit
Plant Yr	•	Rating	Cost	Increase	\$		Fuel	1983 \$	Date	Same Year
Brunswick 147	77	1733	707560	*			25378	39074	18-Har-77	
Rrunswick 122	78	1733	714928	7368	10617	6.13	26633	38179		
Brunswick 187	79	1733	750828	35900	47055	27.15	34206	45134		
Brunswick 147	80	1733	776989	26161	31285	18.05	57516	69511		
Brunswick 157	81	1733	803535	26546	29050	16.76	73150	80831		
Brunswick 157	87	1755	805771	2236	2295	1.31	112235	116982		
Brunswick 127	83	1698	897994	87223	87223	51.37	64972	64972		
Calvert Cliffs 1	75	918	429747	0/210			4741	7270	08-Nav-75	
Calvert Cliffs 1	76	918	430674	1927	3216	3.50	8984	14638	•••••	
Calvert Cliffs 182	77	1828	765995	• • • •			20158	31037	01-Apr-77	
Calvert Cliffs 142	78	1828	777711	11716	17158	9.39	25997	37257	•••••F•••••	
Calvert Cliffs 1#2	79	1828	780095	2384	3183	1.74	36397	48025		
Calvert Cliffs 182	80	1828	790988	10893	13439	7.35	41628	50310		
Calvert Cliffs 142	81	1828	820215	29227	33173	18.15	50409	55702		
Calvert Cliffs 1%2	82	1828	852313	32098	33577	18.37	61969	64590		
Calvert Cliffs 142	83	1770	903868	51555	51555	29.13	50301	50301		
Connecticut Yankee	68	600	91801				2047	5348	01-Jan-68	
Connecticut Yankee	69	600	91841	40	121	0.20	2067	5135		
Connecticut Yankee	70	600	93516	1675	4694	7.82	4479	10561		14-Jan-00
Connecticut Yankee	71	600	93669	153	395	0.66	3279	7364		13-Jan-00
Connecticut Yankee	72	600	93814	145	346	0.58	3749	8084	Ļ	12-Jan-00
Connecticut Yankee	73	600	94016	202	459	0.76	6352	12952		12-Jan-00
Connecticut Yankee	74	600	106212	12196	24285	40.48	4935	9247	1	13-Jan-00
Connecticut Yankee	75	600	108921	2709	4842	8.07	9381	16081		13-Jan-00
Connecticut Yankee	76	600	114503	5582	9317	15.53	9419	15347	1	13-Jan-00
Connecticut Yankee	77	600	117238	2735	4252	7.09	9448	14547	,	13-Jan-00
Connecticut Yankee	78	600	121288	4050	5931	9.89	8738	12523	5	13-Jan-00
Connecticut Yankee	79	600	123037	1749	2335	3.89	18923	24969		12-Jan-00
Connecticut Yankee	80	600	137644	14607	18021	30.03	35155	5 42487	7	13-Jan-00
Connecticut Yankee	81	600	152552	14908	16921	28.20	37488	41424		13-Jan-00
Connecticut Yankee	82	600	16787	3 15326	16032	26.72	35723	3 37234	1	
Connecticut Yankee	83	600	182739	14861	14861	24.77	48671	48671		
Cook 1	75	1089	53861	1			1663	2 2849	7 23-Aug-75	
Cook 1	76	1089	54465() 6039	10227	9.39	7047	11482	2	
Cook 1	77	1089	55223	8 7588	11895	10.92	1001	2 1541	5	
Cook 142	78	2200	996177	1			15707	7 22518	6 01-Jul-78	
Cook 1&2	79	2285	102582	7 29652	39536	17.30	2675	0 3529(5	
Cook 142	80	2250	1074584	48755	59847	26.50	32409	7 39169	3	
Cook 182	81	2285	109631	0 21726	24468	10.71	3796	7 4195	ģ	
Cook 142	82	2285	111861(22300	23200	10.15	5085	7 5301()	
Cook 182	83	3 2222	114559	0 26980	26980	12.14	5790	4 5790	4	
Cooper	74	835	24626	3			269:	1 5043	2 15-Jul-74	
Cooper	75	5 835	26928	7 23019	41399	49.58	738	6 1266	1	
Cooper	78	835	26928	7 0	0	0.00	1021	1 1663.	7	
Cooper	77	7 835	30238	2 33095	51879	62.13	1021	8 1573	2	
Cooper	78	3 836	38463	0 82248	120010	143.55	830	6 1190	7	
Cooper	79	7 836	38457	0 -60	-80	-0.10	1023	2 1350	1	
Cooper	8(836	38456	9 -1	1	.00	1900	4 2296	7	
Cooper	8	1 778	38374	8 -821	-925	-1.19	2045	5 2260	3	
Cooper	82	2 836	38435	8 610	635	0.76	2348	2 2447	5	

				Total	Cost	1983	/HW-yr	0&M -	O&M -F	New Unit	2nd Unit
Plant	Yr	f	Rating	Cost	Increase	\$		Fuel	1983 \$	Date	Same Year
Cooper		07		********			,				
Couper Prystal River		55 77	901	745575				7600	11701	13-Har-77	
Cructal River		79 79	990	415177	49479	71528	80.37	15613	22282	10 101 11	
Crystal Niver		70	896	410171	7050	5189	5.97	23010	31457		
Crystal River		80	890	421055	1974	2301	2.59	39841	48150		
Cructal River		81	801	394011	-37044	-40539	-50.61	42313	46756		
Fructal River		97	801	385759	1749	1794	7.74	46796	48775		
Crystal River		83	868	396620	10851	10861	12.51	63505	63505		
Davie-Rosso		77	960	271283				295	454	31-Dec-77	
Davis-Resse		78	906	635147	363864	530921	584.01	14096	20207	•• ••• ••	
Davis-Resse		79	906	671140	35993	47991	52.97	21737	28681		
Davis-Besse		80	962	738544	67404	82739	86.01	44630	53938		
Davis-Besse		81	962	786437	47893	53938	56.07	41413	45761		
Davis-Besse		82	962	846126	59689	62098	64.55	59955	62491		
Davis-Besse		83	934	870233	24107	24107	25.81	51099	51099		
Dresden 1		62	208	34180				1252	3823		
Dresden 1		63	208	34442	262	921	4.43	1256	3809		
Dresden 1		64	208	34468	26	91	0.44	1071	3174		
Dresden 1		á 5	208	34451	-17	-ċ0	-9.29	1264	3665		
Dresden 1		66	208	34352	-99	-343	-1.65	1163	3267		
Dresden 1		67	208	34366	14	46	0.22	1912	5215		
Dresden 1		68	208	33467	-899	-2897	-13.93	1673	4371		
Dresden 1		69	208	33968	501	1510	7.26	1788	4442		
Dresden 142		70	1018	116609				2294	5409	11-Aug-70	
Dresden 1,2,3		71	1828	220380				3635	8173	15-0ct-71	
Dresden 1,2,3		72	1865	241479	21099	51526	27.63	9142	19713		
Dresden 1,2,3		73	1865	235397	-6082	-14110	-7.57	9050	18453		
Dresden 1,2,3		74	1865	237303	1906	3845	2.06	16731	31350		
Dresden 1,2,3		75	1865	249177	11874	21355	11,45	32895	56389)	
Dresden 1,2,3		76	1865	256493	7316	12389	6.64	30092	49031		
Dresden 1,2,3		77	1865	258522	2029	3181	1.71	26999	41565	1	
Dresden 1,2,3		78	1865	276887	18365	26797	14.37	33932	48642		
Dresden 1,2,3		79	1865	290785	13898	18531	9.94	44579	58821		
Dresden 1,2,3		80	1865	303201	12416	15241	8.17	3813() 46082	•	
Dresden 1,2,3		81	1865	307054	3853	4339	2.33	40361	44599	2	
Dresden 1,2,3		82	1865	331590	24536	25526	13.69	4374() 45570	1	
Dresden 1,2,3		83	1666	331590	0	0	0.00	4480() 4480()	
Duane Arnold		74	565	288821				2121	3975	5 22-Jun-74	
Duane Arnold		75	565	279730	-9091.42	-16350	-28.94	383	7 658		
Duane Arnold		76	565	279928	198	335	0.59	705() 11487		
Duane Arnold		77	565	287561	7633.428	11966	21.18	750	8 1156()	
Duane Arnold		78	597	282345	-5216.42	-7611	-12.75	11914	17082		
Duane Arnold		79	597	306768	24423	32564	54.55	952	8 12573	2	
Duane Arnold		80	597	324186	17418	21381	35.81	1839	3 2223	5	
Duane Arnold		81	597	339460	15274	17202	28.81	2195	6 2426	I	
Duane Arnold		82	597	362209	25849	26892	45.05	2923	7 30478	5	
Duane Arnold		83								U L A+ n	7
Farley 1		77	888	727426			4.4		2 /1	1 VI-96C-/	1
Farley 1		78	888	734519	7093	10221	11.51	1220	1 1/49	7	
Farley 1		79	888	751634	17115	22433	25.26	2254	a 2974	3	

			T	otal	Cost	1983	/MH-yr	0&H -	0&M -F	New Unit	2nd Unit
Plant	۲r	Rati	ng C	ost	Increase	\$		Fuel	1983 \$	Date	Same Year
Earlau t			9	 761370	0105	11504	17 04	2577Å		*****	
Farley 1 Earley 117	g	1 177	10 12 11	SA1001	1013	11377	10.00	41407	45777	30-101-81	
Forlow 117	4 2	ייג גי 177 פו	17 1.	411177	60101	71028	79 97	57499	54708	44 941 DI	
Farlov 127	, g	170 IT	יג י ד לי	LA7910	71297	31407	19 A1	57333	57333		
Fitznatrick	1	15 111 15 91	Q 11	NG NG	01011	010))	10-11	27000	11971	15-303-75	
Fitzpatrick	7	1 01 1 01	() ()	NA NA				10700	17474	10 041 /0	,
Fitznatrick	-	רט ט עק די	, 19	NA NA				17383	24764		
Fitznatrick	7	'a ac	17	NA NA				19045	27301		
Fitznatrick	-	0 00 70 93	,0)7	200 NG				75171	33140		
Fitznatrick	, 5	0 99	55 17	110 110				33303	40749		
Fitznatrick	5	10 OL	17	80 747141				36678	40579		
Fitznatrick	ş	17 99	13	744597	-22544	-23583	-76 71	31504	32836		
Fitznatrick	į	17 01		011077	22011	20000	201/1	01001	01000		
Fort Calhoun	-	10 17 14	11	173970				529	1079	15-Sen-73	
Sort Calbour		74 89	21	175900	1970	7994	9 09	7417	4395	10 000 10	
Fort Calhoun	•	יד די 15 10)1)1	179577	2733	1095	10 74	5940	10220		
Fort Calbour		76 A	21 21	179996	2772 794	549	10.00	7449	12137		
Fort Calhoun		77 13	21	170004	1099	1721	3.59	9493	13075		
Fort Calbour		70 L	21 21	180328	774	497	1.01	8116	11634		
Fort Calhoun		70 A	71	190970	507	467	1 70	9504	11271		
Fort Calhoun		יד היו ג מני	23 A 1	197700	11970	14571	30 29	14777	17321		
Fort Calhoun		יד טט א אר	21	199544	5844	4597	17 48	11477	19477		
Fort Calhoun	1	יד גנ 1. רוס	01 77	211041	19407	17001	27 03	1971	19735	;	
Fort Calbour		07 7 07		1110-11	77.111	10001	27.00	10707	۵		
Fort Gt Uppin	1	55 70 7	54	105610				12121	15993		
Fort St. Vrain		,, 3 20 7.	10	101459	-4151	-5095	-14 90	16994	20405		
Fort St. Wrain		30 3 91 7	14 17	170994	19475	21977	47.70	10001	20770	3	
Fort St. Wrain		οι 3 97 τ	12 87	112703	-9091	-9419	-74 61	20714	21175		
Fort St. Vrain		97 J	12 17	174494	21991	71991	AA . 01	NA	NA NA	1	
Ginna		70 5	17	83175	210/1	22074	0.1101	3199	7543	15-Jul-70	ł
Ginna		71 5	17	83075	-100	-758	-0.50	4391	9862	2	
Ginna		77 5	17	83982	907	2167	4,19	4087	8807		
Sinna		73 5	17	85004	1077	2320	4,49	353/	721()	
Ginna		74 5	17	87668	2664	5305	10.26	5391	10101		
Ginna			17	89750	2082	3721	7.20	6597	11309	}	
Ginna		76 5	17	93308	3558	5939	11.49	7358	11986	5	
Sinna		77 5	17	114141	20833	32391	67.65	794	1222	3	
Giona		78 5	17	121860	7719	11305	21.87	9819	14078	-	
Sinna		79 5	17	129112	7252	9684	18.73	1281	7 1691	1	
Sinna		80 5	17	136138	7026	8668	16.77	18924	22871		
Ginna		81 5	17	159487	23349	26501	51.26	2248	2 2484	3	
Ginna		82 5	17	182754	23267	24339	47.08	2957() 30821		
Ginna		83 4	96	214985	5 32231	32231	64.78	2583	9 2583	9	
Hatch 1		76 8	50	390393	5			586	7 9560) 31-Dec-75	3
Hatch 1		77 8	150	396799	7 6406	9842	11.58	979	9 1508	7	
Hatch 1		78 8	50	409113	12314	17744	20.88	1226	8 1758	5	
Hatch 182		79 17	702	91841	9			2709	4 3575	0 05-Sep-7	9
Hatch 122		80 17	00	947147	7 28728	34355	20.21	3848	6 4651	2.	1.5
Hatch 182		81 1	704	96936	5 22218	24314	14.27	6201	0 6852	1	
Hatch 1&2		82 17	04	100482	4 35459	36400	21.36	6768	7055	2	

• •

· . . · .

:

TABLE 4.12:	NON-FUEL	own and	CAPITAL	ADDITIONS	DATA

Plant	Yr	Rating	Total Cost	Cost Increase	1983 \$	/XW-yr	O&M - Fuel	0&M -F 1983 \$	New Unit Date	2nd Unit Same Year
				+20004						
nelch lez	83	1922	1134115	129291	129291	19.17	103/43	103/43		
Numboldt	ອນ ()	1 20	299/1	-105	-7511	_10 77	221	775		
Humboldt	01 25	1 00 1 LA	23/00	-003 700	-2300	-92.// 98.75	323 L70	1338		
Husholdt	0. 	. 40	17170 77778	-1957	-7101	110 75	817 517	1024		
Humboldt	57	, YU	22890	-1732 254	-7101	14 97	705	13/7		
Husholdt	55 54	1 40	22400	170	445	7 75	597	1710		
Humboldt	49	- 40	22622	10	202	3 70	501 184	1320		
Humboldt	7(1 60	22764	76	222	7 97	070 A19	1440		
Humbaldt	71	. 60 60	22850	86	743	4.04	976	2080		
Humboldt	73	60	22947	97	256	4,27	997	1974		
Humboldt	73	65	22998	51	178	1.97	915	1866		
Humboldt	74	65	23171	173	381	5.86	1070	2005		
Humboldt	75	65	24031	860	1648	25.35	1221	2093		
Humboldt	78	65	24543	512	905	13.92	1980	3276		
Humboldt	77	65	26726	2183	3535	54.39	3081	4744		
Humboldt	78	3 65	28506	1780	2675	41.16	1635	2344		
Humboldt	79	65	28567	61	83	1.27	1485	1959		
Humboldt	8) 65	NA				1587	1918		
Humboldt	81	65	NA				2073	2291		
Indian Point 1	6	5 275	126218				2762	8310	15-Sep-62	
Indian Point 1	64	275	126255	37	131	0.48	2894	8575	1	
Indian Point 1	6	5 275	126330	75	266	0.97	2626	7615		
Indian Point 1	60	275	128891	2561	8808	32.03	2929	8228		
Indian Point 1	6	7 275	128821	-70	-230	-0.84	3184	8684		
Indian Point 1	68	3 275	128818	-3	-10	-0.03	2831	7396		
Indian Point 1	6	7 275	127914	-904	-2736	-9.95	2713	6740		
Indian Point 1	7() 275	128083	169	474	1.72	3498	8248		
Indian Point 1	7	1 275	128175	92	237	0.86	3962	8878		
Indian Point 1	73	2 275	128938	763	1823	6.63	6950	14986		
Indian Point 1&2	73	5 1288	334963				14854	30288	15-Aug-73	
Indian Point 142	74	1288	340188	5225	10404	8.08	12737	23866		
Indian Point 142	7	5 1288	348218	8030	14353	11.14	13195	22619		
Indian Point 142	7	5 1288	359410	11192	18681	14.50	18285	29793		
Indian Point 182	7	7 1288	370637	11227	17456	13.55	16525	25443		
Indian Point 142	7	3 1289	377573	6936	10158	7.89	28167	40378		
Indian Point 142	7	9 1288	379966	2393	3195	2.48	32643	43072		
Indian Point 2	8	0 1013	329445				32964	39839		
Indian Point 2	8	1 1013	378037	68592	77852	76.85	54508	60229		
Indian Point 2	8.	2 1013	461010	62973	65875	65.03	68664	71568		
Indian Point 2	8	3 1022	4//418	15408	16408	16.05	48345	48549		
Indian Point 3	7	5 1123	NA				2460	4008	50-Aug-78	l .
Indian Point S	1	/ 1123	ME				12634	14483	•	
Indian Point S	1	8 1058	NA	1			25518	5542/		
Indian Point 3	/	9 1068	Sti-	}			28884			
Indian Point S	8	1 1012	NA 1070+r	1			2033/	60839		
Indian Point J	8	1 1015	473011 577754	90779	70103	70 90	381/4	1 07201 1 02077	•	
Indian Point 3	10 0	2 NV 7 1412	UECTER IG	e 27332 I	14004	30.27	16630 16	7 nv 7 aanaa	1	
Kewaunee	7	4 535	202193	1 - 			7222	13532	16-Jun-74	

. . .

			Total	Cost	1983	/HH-yr	0&M -	OWN -F	New Unit	2nd Unit
Plant	Yr	Rating	Cost	Increase	\$		Fuel	1983 \$	Date	Same Year
Kewaunee	75	535	203389	1196	2151	4.02	8945	15334		
Kewaunee	/6	535	205351	1962	3323	6.21	10727	17478		
Kewaunee	11	333	205892	541	848	1.59	10924	16819		
Kewaunee	/8	333	209748	3856	5626	10,52	10430	14952		
Kewaunee	19	535	213289	3541	4/21	8.82	11323	14941		
Kewaunee	80	535	214676	1407	1727	3.23	14843	17939		
Kewaunee	81	535	227413	12717	14322	26.77	19334	21364		
Kewaunee	82	535	236500	9087	9454	17.57	21978	22908		
Kewaunee	83	563	252718	16218	16218	28.81	22603	22603		
LaSalle	82	10/8	1336166				4819	5023		
LaSalle	83	1122	1344053	/88/	1881	7.03	32800	52800		
Lacrosse	/8	60	22991				2658	3/82		
Lacrosse	19	50	23132	141	188	5.76	3041	4015		
Lacrosse	80	50	25987	2855	3505	/0.09	5518	4010	•	
Lacrosse	81	50	26237	250	282	5.63	2423	45/0		
Lacrosse	82							0		
Lacrosse	83							0		
naine Yankee	/ 3	820	219223	1010	7:00		4034	8726	VI-Jan-/J	
Maine Yankee	/4	830	2210/4	1849	3682	4.44	5252	9803		
Naine Yankee	/5	830	233/10	12636	22586	27.21	6301	10801		
Maine Yankee	76	830	235069	1359	2268	2.73	5261	8572		
Naine Yankee	11	830	236454	1385	2153	2.59	8418	12961		
naine Yankee	/6	864	23/810	1336	1986	2.30	10817	13398		
Maine Yankee	۲۱ ۱۹	854	23998/	2177	2907	3.33	9971	1313/		
maine Tankee	35) 854	246847	6860	8463	9.80	14028	10734		
Maine Yankee	81	. 804	262240	13242	1/4/1	20.22	203/8	22/3/		
Maine Yankee	45 07	(85 9 / 0/4	257/38	- 1978 5075	/899 5075	4.93	28004	27/62		
Maine Tankee	a: 01	004	2/3/13	37/3	34/3	8.72	21337	Z1337 7001	At	
ACBUITE I MaCuina (0: 0:	11111	703601	7535	7700	7 04	2/10 77050	2001	01-066-01	
NCOUITE I N-Cuine 110	01 01	11110 7 7330	777140	3343	2100	3.04	37230	40131	01-8	. 7
NCOUIFE 142	0. 71	5 <u>2440</u> 1 224	703347 02010	l.			12131	. 41131 7717	01-1121-0- 09-0070	1 : 1
Milistone i	נז יר	1 001 7 221	71007 717770	5.74	1959	t 00	3230	. 7313 ! {LEEA	- 10-08C-10	i
Milistone i Milistone i	74 77	C 001 T LL1	77343) JZ4 1 1404	1232	1.07	7077	10007	r I	
Milistone i	7.	5 001 8 1.1 1	70037	1777	-197	_0.79	7033	13300 19779		
Milletopa 1	יין זיך	- 001 - 221	00743	100	007	1 75	17045	: 10370 : 70107	}	
Willstone 1	7.	L 111	175131	7007 7007	12075	1.33	12003	1 20002 1 229274		
Nillstone i	7	3 661 7 LL1	123173	13077	73213	5 10	17071	10457	2	
Nillstone 1	71	- 603 - 661	170707	1 12303	19074	זר.נ דר דר	12037	107579	1	
Nilletone i	71	2 221	157175	17357	10019	25.25	27040	3 20077	1	
Willstopp f	5 9	144 0	120100	10001	17427	20.71	23000	00057		
Nilletone i	0 9	1 771	74775/	170017	17070 QA507	137 04	23070	r 1775 N 76767	2	
Milletone 1		7 441	277599/	1 77012 N 79430	70307	137.07	33230	100005 7	,)	
Nillstone 1	0. D	T 601	292531		11177 11177	10 05	47520	20076 S	*)	
Hillstone 7	0. 7	5 902	110733	, goji)	1600	74+49	10001	10007 1 11	, 7 76-8er-74	5
Nilletone 7	7.	L 107 L 909	10011 126011	7900	17194	14 50	10070	11 17907	ר דה הרי וידי נ	4
Nilletone 2	7	7 909	41975	57117	74952	79 45	1737	7 74755	3	
Nillstone 7	7	8 9/0 1		14997	21902	20.73 27 00	77795	1 31020 1 20131	-	
Milletone 7	7	9 909	ALALT.	1007L	7871	1.57	2193	78935	, 1	
Hilletone 7	, a	0 404	47759	. 17917	15070	17 57	30141	Z ZAASA	-	
HITTSCONE T	5	- 191	11100	شذاشد م	10121	21004	00101		•	

Plant	۷۳		Ratinn	Total Cost	Cost Increase	1983	/MW-yr	O&H - Fuel	0&H -F 1993 \$	New Unit	2nd Unit Same Year
								/ 461			
Millstone 2		81	909	495610	18024	20457	22.51	28877	31909		
Millstone 2		82	909	529017	33407	34946	38.44	45248	47162		
Millstone 2		83	910	557977	28960	28960	31.82	56452	56452		
Monticello		71	568	105011				1429	3209	30-Jun-71	
Monticello		72	568	104937	-74	-181	-0.32	2567	5535		
Monticello		73	568	106869	1932	4482	7.89	5006	10208		
Monticello		74	568	117996	11127	22448	39.52	5179	9704		
Monticello		75	568	122106	4110	7392	13.01	8729	14963		
Monticello		76	568	123362	1256	2127	3.74	6609	10768		
Monticello		77	568	124390	1028	1611	2.84	11109	17104		
Monticello		78	568	126488	2098	3061	5.39	9136	13097		
Monticello		79	568	134937	8449	11265	19.83	10584	13965		
Monticello		80	568	139725	4788	5877	10.35	21413	25879		
Monticello		81	568	150407	10682	12030	21.18	18261	20178		
Monticello		82	568	171425	21018	21866	38.50	30799	32102		
Monticello		83	580	227698	56273	56273	97.02	21963	21963		
Nine Mile Point		70	620	162235	i			1716	4046	15-Dec-69	
Nine Mile Point		71	641	164492	2257	5822	9.08	2759	6196		
Nine Mile Point		72	641	162416	-2076	-4961	-7.74	3575	7709		
Nine Mile Point		73	641	163212	796	1807	2.82	4524	9225		
Nine Mile Point		74	641	163389	177	352	0.55	6251	11713		
Nine Mile Point		75	641	164189	800	1430	2.23	5810	9960		
Nine Nile Point		76	641	181200	17011	28393	44.30	5330	8685		
Nine Mile Point		77	641	188087	6887	10708	16.70	9743	15001		
Nine Mile Point		78	641	187088	-1001	-1466	-2.29	6382	9149		
Nine Mile Point		79	641	204080	16994	22692	35.40	11663	15389		
Nine Mile Point		80	641	217371	13291	16397	25.58	32964	39839		
Nine Mile Point		81	642	265015	5 47644	54076	84.23	26744	29552		
Nine Nile Point		82	620	281923	2 16907	17686	28.53	2148(22388		
Nine Mile Point		83	640	367748	85824	85824	134.10	25248	25248		
North Anna 1		78	979	78173	7			652	9348	06-Jun-78	
North Anna 1		79	979	783864	2125	2785	2.85	19519	25755		
North Anna 142		80	1959	131586	? ?			2539(30685	i 14-Dec-80	•
North Anna 182		81	1959	136819	5 52326	57262	29.23	28857	31887		
North Anna 147		82	1959	141671	7 48022	49297	25.16	43493	45333	5	
North Anna 187		83	1894	147293	56717	56717	29.95	49578	49578	1	
Ornnee 1		73	984	15541	7			91	185	8 16-Jul-73	
Arnnes 1 7 3		71	2660	47444	- {			4983	13082	09-Sen-74	16-Dec-74
Bronce 1,2,0		75	2660	47669	1 749	44L	0.17	1744	7 21340))	
Oconee 1,2,0		76	2650	47979	3 7107	3534	1.33	16735	77767	r T	
Broppe 1, 7 3		70	2440	1011	A 11071	17781	4 99	2503	3855)	
Oconce 1,2,5		79	2666	19769	- 11/01 0 10/5	2972	1 04	2960) A9A33)	
Oronop 1 2 3		70	2661	1000	5 4786	9197	7.09	1000	7 5301	र	
Bronzo 1 7 3		77 00	2001	50047	3 10507	17540	3.00 4 77	5200	, 5001. K 67943	1	
Beenen 1 7 3		01	7661	57003	L 10303	12500	1.75	5979	01040 14010 0	, 7	
Brones 1 7 7		01 07	7100 1000	32003 57712	G 1037G	11375 19858	7.JJ A 17	2010 2010	טידט. ג סודני	2	
droppo 1 7 7		02 07	2000	JJ210 57005	0 ILIJZ 0 7701	12737	ים.ד רפר ר	7795	L 7795	, 4	
OLUNCE 1,2,0 Auctor Cenab		03 70	550	0000 0000	। ।।।६ र	1171	2.03	105	נייני, <u>ג</u> יחא ו ז	- 5 15-Der-49	,
ayacer Greek		70	550	0700	1 7770	5777	ta 50	202	7 495	, 10 Der 01 Y	· · ·
ayares users		11	550	1212	1 11.50 7 51.L	1922	20.30	707	, 0,3 7 97 <i>L</i> I	-)	
UJSLES GEER		14	110	1792	1 310	1700	L. L7	106	, 0001	•	

-

Plant	Yr	Rating	Total Cost	Cost Increase	1983 \$	/NW-yr	04M - Fuel	0&M -F 1983 \$	New Unit Date	2nd Unit Same Year
Oyster Creek	7	3 550	92766	129	293	0.53	6311	12868		
Oyster Creek	7	4 550	92198	-568	-1131	-2.06	10678	20008		
Byster Creek	7	5 550	97151	4953	8853	16.10	12310	21102		
Øyster Creek	7	6 550	108545	11394	19018	34.58	10399	16944		
Byster Creek	7	7 550	112583	4038	6278	11.42	14833	22838		
Øyster Creek	7	8 550	150459	37876	55470	100.85	15898	22790		
Byster Creek	7	9 550	161745	11286	15070	27.40	13055	17226		
Oyster Creek	8	0 550	200255	38510	47510	86.38	37530	45357		
Oyster Creek	8	1 550	222963	22708	25774	46.86	45254	50006		
Oyster Creek	8	2 550	256407	33444	34985	63.61	60812	63384		
Oyster Creek	8	3 650	331441	75034	75034	115.44	72992	72992		
Palisades	7	2 811	146687				753	1624	15-Nov-71	
Palisades	7	73 811	160284	13597	31545	38.90	3160	6443		
Palisades	7	4 811	180063	19779	39902	49.20	11778	22069		
Palisades	7	75 811	182297	2234	4018	4.95	9601	16458		
Palisades	7	76 811	185272	2975	5038	6.21	9848	16046		
Palisadas	-	77 811	182068	-3204	-5022	-6.19	6569	10114		
Palisades	7	78 811	199643	17575	25644	31.52	15393	22066		
Palisades	•	79 811	194651	-4992	-6656	-8.21	26344	34760	ł	
Palisades	{	811	211505	16854	20689	25.51	19251	23266		
Palisades		81 811	255491	43786	49538	61.08	44140	48775	1	
Palisades	{	87 811	282667	27175	28273	34.85	38452	40078		
Palisades		83 810	375573	92906	92906	114.70	55154	55154		
Pathfinder	,	67 75	74937	, . .			769	2097	25-Mav-67	
Poach Rottom 1		57 46	10693	,			849	2310	01-Jun-67	
Poorb Rottom 1		67 10 49 44	10474		-217	-4.73	1666	4352		
Poach Rottom !	1	10 10 19 14	1045	7 34	103	7.74	1481	368()	
Peach Bottom 1		01 40 70 Δ4	1000	5 01. 5 41	171	3.72	1537	3624		
Peach Bottom 1		75 44	1099	n 171	441	9.59	173	388	3	
Pouch Bottom 1		70 AA	1007	-49	-145	-3 59	1877	4039	-	
Peach Ductom 1		77 AL	1174	D 549	1744	27 AA	160	5 327	3	
Peach Bottom 1		75 76 78 86	1100	5 _994	-1760	-38 27	1050) 1963	7	
Peach Bullow 1 Posch Posttow 7 7		78 2708	74215	5 007 R	1100	VU, LI	179	1 335	6 05-Jul -74	23-Dec-74
Predict Succos 2,3		75 2304	75709	0 1 11973	21172	9 17	17619	2143)	
Posch Bottom 7 7		75 1304	74172	n 11013 7 7711	12921	5 41	3040	1 4985	- 1	
Peach Bottom 2,3		70 2307	701/1	2 1)71 8 7777	50772	71 05	44471	1,00	2	
Peach Dottom 2,3		77 2004	00740	T 32372 L 17807	19427	9.52	-100F 7070,	1 1100. L 5.L.T.A.	<u> </u>	
Perch Bullus 2,3		70 2307	01770	0 1070L 7 L70L	0407	3.31 7 LE	1000	8 50791	5	
Pedck Doctom 2,3		00 2304	013/7	2 0270 0 770tL	1740	17 77	5107	T 3230. 5 4973	3 L	
Peach Bollog 2,0		00 2304	00011	0 11710 D LEALI	78700	14+47	77211	5 0073 5 0073	5 N	
Peach Bottom 2,3		01 2304	TVZ10	7 GJ4GI A 51971	/4270 57509	31.13 77 71	7201	0 0517	<i>।</i> र	
Peach Bottom 2,3		02 2004	07510	0 JIZJI 7 91797	71777	13.10	0100 ((LA7)	7 0012 4 11207.	3 A	
Peach Bottom 2,5		03 2170 70 155	: 7/JIZ : 79153	/ <u>/////</u>	21727	7.07	11007	A 11007 A 71	1 09-Dec-7'	,
Pilgrim Dilesia		12 033	32134	v n			17	7 JI 7 070	1 1 01-757-11	
711g713		73 800	23732	7 רעדד ה	_)//E	-10.10	לור ריבמ	/ 7/0 7 1705	1	
riigris Dilaaia		/ 630	3 23348	1 -334/	-9993	-19.18	732	1 1/03 A 1950	1 7	
riigria Dilesi		/3 635	20646	4 482	862	1.32	13 1 177	ບ 1∠35 ຊີ 1710	<u>۲</u> ۱۱	
Filgrim		/6 65:	3 Z4144 • oraca	U 47/6	8006	12.58	1000	5 2/10 A 1750	1	
Pilgrim		11 655	25/5/	7 16137	72042	28.21	1227	V 2008	a 7	
Filgrim		/8 68	/ 2617:	18 41/9	6120	8.71	1418	7 2000	4	
Piloria		/4 687	/ 27042	8 86/0	115/7	15.83	1928	a 7470	1	

÷

			Total	Cost	1983	/////////////////////////////////////	OAM -	O&M -F	New Unit	2nd Unit
Plant	Yr	Rating	Cost	Increase	\$		Fuel	1983 \$	Date	Same Year
Piloria	 80	 687	337986	67558	83346	121.32	27785	33580		
Piloria	81	687	358680	20694	23488	34.19	34994	38598		
Piloria	87	497	430711	72031	75350	109.68	42437	44232		
Piloria	83	685	477931	-2880	-2880	-4.70	44748	46768		
Point Beach 1	71	505	77959	****	2000	1920	1300	2940	31-Dec-70	
Point Reach 157	77	1047	145749				2305	1970	30-Son-77	
Point Reach 117	77	1047	141472	16294	77779	34 09	7447	7436	00 och 11	
Point Beach 142	74	1047	101002	_194	_705	-0.79	5220	9799		
Print Roach 112	75	1047	144774	2799	5014	a 79	6159	10558		
Point Reach 122	75	1047	167125	2901	7100 A	A 49	4597	10741		
Point Beach 142	70	1047	194901	2131 29474	44519	78 AA	2012 2014	10771		
Point Beach 142	79	1047	171199	-75610	-77771	-75.49	7705	10401		
Point Beach 182	70	1047	170220	_571	_105	-0 11	1010	16001		
Print Deals 141	27 QA	1077	170000	1004	-973 7718	7 17	17904	21170		
Point Deach 142	01	1047	100105	1007	100%5	17 78	21104	21030		
Point Seath 182	10	1047	100773	10013	16073 7055	17.17	71051	27030		
Puint Deach 142	07	1047	172277	36VZ 9217	3733	0./0 0.40	21731	23302		
Peniero Iel 1	65 77	1V40 507	179710	2013	2013	2.47	101	37213	th-Doc-73	
Prairie 151, 1	/ J 7 #	110/	200204				101	200	10-Dec-74	
Prairie 151. 182	74	1100	+16604 50001	4077	0100	7 77	7210	10887	71-DEC-14	
Prairie 151. 142	/3	1188	410207	4833	8072	1.33	/201	12997		
Prairie 151. 142	10	1100	41308/	2080	48//	4.11	13374	23370		
Prairie 151. 182	// חד	1185	423766	108/7	17034	14.38	1/070	20313		
Prairie 151, 182	/0 70	1100	4/316/	1210	1//4	1.3V 0.57	19219	20370	•	
Prairie 151. 182	T 1 00	1100	433037	04// 11107	11303	7.33	13340	20247	1	
Prairie 151. 142	CV 01	1100	444/00	1110/	13034	11.30	231/3	20000 20204		
Prairie 151. 142	01	1100	437001	11310	130/0	11.70	20/71	27604		
Prairie Isi. 142	82	1188	4/0000	21606	22978	18.73	20107	27380		
Prairie 151. 142	03 70) 1120) 1151	477040 200130	21100	21100	18.07	27303	27303 : 4704	15-400-75	15-Con-77
adad Gilles 142	11	: 1030 : 1/5/	200147	11700	0/ 105	15 0/	2033	1001	11-400-11	13-3ep-72
Ruad Cities 182	/3 71	1038	211337	11370	20923	13.70	0270	12020	1	
Adad Gilles 142	/1 75	1 1030 1 1151	223002	. 12040 17775	24701	13.04	14777	1 17137 1 17137		
Ruad Citles 142	73	1030	23/22/	13343	24000	14.47	14///	10001 107080	1	
Ruad Cities 182	י ג רד	1 1030 1 1151	27146	571A	/ IVI 0057		10/2.) LILIG . 97770	}	
	ו ז זר	1030 1157	24/174	53314	0737	5.41	11100	1 ZJJJC 1 ZJJJC	; }	
Audu Lilles 182	/ (70	3 10JO 3 12JO	232731 927741	10700	11707	J.V/ 0 L0	22100	1 31770 1 30005) 	
Bund Cities 142	() 0/	10J0 11151	100/11	107702 1770 - 1	1430/	0,07 207	70101	1 30701 L 11751	I	
Ruad Cities 182	01	J 1030	2/30/.	1 7334 E440	11937	0.72 7 71	30000	3 10/3- 3 1110/	r	
Budd Cities 142	01 01	1030 7 1151	210321	1 3777 7 70277	013/ 7705A	3.71 20 50	31211 8719	11100	; }	
Augu Cities 182	01 67	C 1030 7 1 <i>111</i>	21113	0101	0108	20.30	7210.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, 1	
Beerbe Coop	0. 71	5 1000	217671	. 7104 1	7104	ل ف ف ف	1120	, 1000. 1000	; 7 17-0nr-74	Ε ,
Nancho Seco Resete Ceso	71	3 728	393023 787870	/ 		-0.75	1100	(1707. 1 1179(с 13-пµс-зо 1	د
Rancho Seco	7	3 728	343430 77105	102 - 102 1 - 7700	-110/4	-17 00	117.) 1172() 7155)	/ 2	
Rancho Seco	1.	/ 728 n nan	33603	J -/308	-11704	-12.07	1107	0 <u>113</u> 3 1 1 <i>101</i> 3	4 I	
Kancho Seco	71	3 728	338/7/	(<u>1197</u>	4121	4*34 • AD	1183*	t 10704 n 1010	1 7	
Kancho Seco	1	9 928 0 000	33733	3 /95 I 1407/	1012	1.07	1012	U 1010- D 7477	•	
Rancho Seco	21	V YZB	21E1E 232314	19035	1/441	18./7	28901 7653	ა ა შ აა. ე ი იი	ر A	
Kancho Seco Reesta Casa	8	1 728	39393	1 12077	13/15	14./8	3334. 7177	L 3721' N 7702'	ד 7	
Rancho Seco	8.	2 728 7	901773	3 9314	3122	7.01	20231	1 9120	ĥ	
Rancho Seco	ช -	3 1 7/0	7775				1011	170	υ 2 Δ7_μ×≠-7	1
R001050A	/	1 /00	1113	د			171	1067 6	2 01-081-1	•

. .

.

TABLE 4.12: NON-FUEL OWN AND CAPITAL ADDITIONS DATA

				Total	Cost	1983	/HH-yr	01H -	O&M -F	New Unit	2nd Unit
Plant	Yr	1	Rating	Cost	Increase	\$		Fuel	1983 \$	Date	Same Year
Rohinson		72	768	81999	4246	10369	13.50	1780	3838		
Robinson		73	768	82113	114	264	0.34	4607	9398		
Robinson		74	768	83272	1159	2359	3.07	4780	8956		
Robinson		75	768	84982	1710	3075	4.00	6360	10902		
Robinson		76	768	85234	252	424	0.55	5903	9618		
Robinson		77	768	89540	4306	6616	8.61	6859	10561		
Robinson		78	768	93410	3870	5577	7.26	14355	20578		
Robinson		79	768	101253	7843	10230	13.39	15142	19980		
Robinson		80	768	110025	8772	10490	13.66	22085	26691		
Robinson		81	769	113858	3833	4195	5.45	21788	24076		
Robinson		82	769	125878	12020	12339	16.05	43164	44990		
Robinson		83	739	128046	2168	2168	2.93	37309	37309		
Sales 1		77	1170	850318				12707	19565	30-Jun-77	
Sales 1		78	1170	850983	665	974	0.83	22311	31983		
Sales 1		79	1169	898641	47658	63637	54.42	42508	56088	ļ	
Sales 1		80	1170	938748	40107	49480	42.29	59684	72131		
Sales 142		81	2343	1758749				77502	8554(13-8ct-81	
Salem 182		82	2343	1806872	48123	50341	21.49	156615	163239		
Salem 182		83	2294	1739122	-67750	-67750	-29.53	160582	160582	•	
San Onofre 1		68	450	80855				1481	3869	01-Jan-68	
San Onofre 1		69	450	84439	3584	11533	25.63	1975	4907	1	
San Onofre 1		70	450	84714	275	832	1,85	2236	5272	-	
San Onofre 1		71	450	85369	655	1847	4.10	2412	5417	1	
San Onofre 1		72	450	85547	178	470	1.05	3518	7586	1	
San Onofre 1		73	450	85821	274	688	1.53	5839	11906	5	
San Onofre 1		74	450	86244	423	931	2.07	5559	10418	;	
San Onofre 1		75	450	86438	194	372	0.83	8668	14854	?	
San Onofre 1		76	450	95496	9058	16011	35.58	10490	17092		
San Onofre l		77	450	162475	66979	108463	241.03	8123	1250	7	
San Onofre 1		78	450	181601	19126	28746	63.88	14517	2081()	
San Onofre l		79	450	192599	10998	14922	33.16	11669	1539	7	
San Onofre 1		80	450	211109	18510	23000	51.11	31089	37573	5	
San Onofre 1		81	450	251119	40010	45441	100.98	24398	2695	3	
San Onofre 1		82	456	298461	47342	49306	108.13	36830	3838(3	
San Onofre 2		83	1127	2145708	}			-1279() -1279	0 08-Aug-83	5
Sequoyah 1		81	1220	983543	1			19218	21234	1 01-Jul-81	i
Seguoyah 1&2		82	2441	1606803	1			4775	5 4 977	6 01-Jun-82	2
Sequoyah 142		83							()	
Shippingport		80	100	3212	5			737	5 891	3	
Shippingport		81	100	32123	5 -2	-2	-0.02	8601	950	4	
Shippingport		82	100	N	ł			612	2 638	1	
St. Lucie 1		75	850	470223	5			- 3249	7 529	4 21-Dec-78	ż
St. Lucie 1		-77	850	48623	16007	24574	28.93	752	8 1159	1	
St. Lucie 1		78	850	49503	8088 8	12692	14.93	1581-	4 2267	0	
St. Lucie 1		79	850	49960	2 4564	5982	7.04	1439	2 1899	0	
St. Lucie 1		80	850	50528	7 5685	6799	8.00	1638	1 1979	7	
St. Lucie 1		81	850	51364	0 8353	9141	10.75	2324	0 2568	0	
St. Lucie 1		82	850	52989	1 16251	16682	19.63	2185	3 2277	7	
St. Lucie 142		83	1706	181723	7			2884	5 2884	5 08-Aug-8	3
Surry 1		72	847	24670	7			60	7 130	9 22-Dec-7	2

÷

è

· ..

.

				Total	Cost	1983	/NH-yr	0%H -	0&M -F	New Unit	2nd Unit
Plant	Yr		Rating	Cost	Increase	\$		Fuel	1983 \$	Date	Same Year
Surry 142		73	1695	396860				5102	10403	01-May-73	
Surry 142		74	1695	402096	5236	10656	6.29	9878	18509		
Surry 142		75	1695	406409	4313	7757	4.58	15270	26176		
Surry 142		76	1695	408516	2107	3542	2.09	14796	24108		
Surry 182		77	1695	412236	3720	5715	3.37	15977	24599		
Surry 142		78	1695	419952	7716	11119	6.56	19323	27700		
Surry 182		79	1695	409703	-10249	-13434	-7.93	23313	30761		
Surry 142		80	1695	556083	146380	175052	103.28	29458	35602		
Surry 182		81	1695	750969	194886	213271	125.82	31185	34459		
Surry 182		82	1695	783058	32089	32941	19.43	33088	34487		
Surry 122		83	1648	805393	22335	22335	13.55	55428	55428		
Three Mile Isl.	1	74	871	398337				3351	6279	02-Sep-74	
Three Mile Isl.	1	75	871	400928	2591	4631	5.32	14226	24386		
Three Nile Isl.	1	76	871	399425	-1503	-2509	-2.88	17840	29068		
Three Hile Isl.	1	77	871	398895	-530	-824	-0.95	13287	20458		
Three Hile Isl.	1	78	871	361902	-36993	-54177	-62.20	17954	25737		
Three Hile Isl.	-	79	871	407935	46034	61469	70.57	11842	15625		
Three Mile [s].	1	80	NA	NA				NA	NA		
Three Mile Isl.	1	81	435	220798				27024	29862		
Three Mile Isl.	2	78	961	715466				0	0	30-Dec-78	
Three Mile Isl.	2	79	961	719294	3828	5112	5.32	12402	16364		
Three Mile Isl.	2	80	NA	NA				NA	NA		
Three Mile Isl.	2	81	480	358321				8394	9275		
Trojan	-	76	1216	451978				5921	9647	20-Mav-76	
Trojan		77	1216	460666	8688	14069	11.57	13628	20983		
Trojan		78	1216	466419	5753	8647	7.11	15204	21795		
Trojan		79	1216	486705	20286	27523	22.63	16957	22374		
Trojan		80	1216	503279	16574	20594	16.94	25790	31169		
Trojan		81	1216	548765	45486	51661	42.48	32205	35587	1	
Trojan		82	1216	565578	16811	17509	14.40	30629	31924		
Trojan		83	1216	573894	8318	8318	6.84	28841	28841		
Turkey Point 3		72	760	108709				247	533	04-Dec-72	
Turkey Point 344	ļ	73	1519	231239)			4059	8277	07-Sep-73	5
Turkey Point 344		74	1519	235498	4257	8663	5.70	9660) 18100	}	
Turkey Point 344	1	75	1519	24425	8760	15754	10.37	15493	3 26558	3	
Turkey Point 344	}	75	1519	255705	11449	19248	12.67	18602	2 30309	r	
Turkey Point 344	4	77	1519	26764	8 11943	18350	12.08	15109	23263	5	
Turkey Point 344	•	78	1519	27344	5793	8348	5.50	18602	26666	5	
Turkey Point 344	4	79	1519	28443	10990	14405	9.48	2251	29703	3	
Turkey Point 384	\$ \$	80	1519	293654	9223	11030	7.25	3083(37260)	
Turkey Point 344	4	81	1519	30550	3 11849	12967	8.54	3027	4 33453	3	
Turkey Point 344	1	82	1519	417224	111721	114687	75.50	32068	3 33422	2	
Turkey Point 34	4	83	1456	52722	110000	110000	75.55	4551	7 45513	7	
Vermont Yankee	•	72	514	17204	2			41	893	5 30-Nov-73	2
Vermont Yankee		73	563	18448	1 12439	28237	50.15	495	7 1010	3	
Versont Yankee		74	563	18515	3 677	1348	2.39	5693	2 10665	5	
Vermont Yankee		75	563	18573	9 581	1038	1.84	768	z 1316	7	
Versont Yankee		76	563	19388	5 8147	13598	24.15	791	2 12892	2	
Vermont Yankee		77	563	19633	1 2445	3801	6.75	977	5 1505	0	
Vermont Yankee		78	563	19883	7 2506	3670	6.52	1119	1 16043	3	

· :

Plant	۲r		Ratino	Total Cost	Cost Increase	1983 \$	/MW-yr	0&M - Fuel	0&M -F 1983 \$	New Unit Date	2nd Unit Same Year
Hannah Vachar											
Vermont lankee		17	363	200833	1998	2668	4./4 71 /0	14208	18/4/		
Versont Tankee		89	300	21/3/3	15/40	20652	36.68	22586	27296		
Vermont Tankee		91	383	228113	8340	4642	17.22	26/93	29609		
Vermont fankee		82	383	201880	0/60 07700	6031	10./1	55/64	35192		
Verdont tankee		85	363	255209	23329	23329	41.44	46510	46310		
Tankee-Kowe		6Z	132	38182				1282	3915	01-Jul-60	
Tankee-Kowe		65	185	38248	236	837	4.52	1312	3947		
Tankee-Kowe		64	185	38622	224	795	4.29	1121	3322		
Yankee-Kowe		63	185	38/66	144	511	2.76	1403	4068		
Yankee-Kowe		66	185	39390	624	2146	11.60	1505	4228		
Yankee-Kowe		6/	185	39560	170	559	3.02	1307	3565		
Yankee-Kowe		68	185	39572	12	38	0.21	1501	3921		
Yankee-Kowe		69	185	39623	51	154	0.83	1602	3780		
Yankee-Rowe		70	185	39636	13	36	0.20	1558	3674		
Yankee-Rowe		71	185	40271	635	1638	8.85	1745	3919		
Yankee-Rowe		72	185	41500	1229	2937	15.87	2912	6279		
Yankee-Rowe		73	185	42507	1007	2286	12.36	2437	4969		
Yankee-Ro¥e		74	185	44473	1966	3915	21.15	3950	7401		
Yankee-Rowe		75	185	46101	1628	2910	15.73	4557	7812		
Yankee-Rowe		76	185	46566	465	776	4.20	4976	8108		
Yankee-Rowe		77	185	48332	1766	2746	14.84	6766	10725		
Yankee-Rowe		78	185	48912	580	849	4.59	7653	10971		
Yankee-Rowe		79	185	52192	3280	4380	23.67	10150	13393		
Yankee-Rowe		80	185	55285	3093	3816	20.63	22250	26890		
Yankee-Rowe		81	185	63717	8432	9570	51.73	22069	24386		
Yankee-Rowe		82	185	72149	8432	8821	47.68	24320	25349		
Yankee-Rowe		83	185	72503	354	354	1.91	18987	18987		
Zion 1		73	1098	275989				44	90	15-Oct-73	
Zion 1&2		74	2196	565819				9234	17302	15-Sep-74	
Zion 142		75	2196	567987	2168	3899	1.78	12735	21830		
Zion 142		76	2196	571762	3775	6393	2.91	18268	29765		
lion 142		77	2196	577903	6141	9626	4.38	18104	27874		
Zion 142		78	2196	586396	8493	12392	5.64	20383	29219		
Zion 142		79	2196	594941	8545	11393	5.19	26954	35565		
Zion 1&2		80	2196	625788	30847	37865	17.24	37655	45508		
Zion 1&2		81	2196	639723	13935	15694	7.15	44864	49575		
Zion 142		82	2196	650175	10452	10874	4,95	52617	54842		
Zion 182		83	2170	680259	30084	30084	13.86	45956	45956		

.

..

,

	GNP		Calvert				North	Peach	Point F	rairie	Quad		Turkey	
Year	Deflator	Arkansas	Cliffs	Cook	Farley	Hatch	Anna	Bottos#	Beach	Island	Cities	Surry	Point	Zion

1973	105.75								3647		6290			
1974	115.08								5229		9210	9878	9660	
1975	125.79							12619	6159	7261	14777	15270	15493	12735
1976	132.34							30601	6592	15574	16723	14796	18602	18268
1977	140.05							46674	8014	17090	17756	15977	15109	18104
1978	150.42		25997					39306	7395	14214	22168	19323	18602	20383
1979	163.42		36397	26750				40004	12461	15346	23420	23313	22511	26954
1980	178.42		41628	32409		38486		56875	17904	23175	38686	29458	30830	37655
1981	195.14	54422	50409	37967		62010	28857	72615	26820	26791	37272	31185	30274	44864
1982	206.88	54496	61969	50859	52488	67689	43493	81669	31951	28169	42185	33088	32066	52617
1983	215.33	64928	50301	57904	57333	105745	49578	116074	34273	29383	44448	55428.	45517	45956
ANNUAL E	ROWTH RAT	ES TO 1983	:										· ·	
NOMINAL:	7.4%	9.23%	14.11%	21.30%	9.23%	40,06%	31.07%	31.97%	25.11%	19.092	21.50%	21.12%	18.80%	17.40%
REAL:		3.982	6.211	13.21%	4.94%	31.55%	24.78%	23.392	16.532	11.35%	13.25%	12.98%	10.812	9.771
Notes:	€ Units 2	and 3												

÷ .

· .

TABLE 4.13: TWIN UNIT NUCLEAR OWN HISTORIES (\$ thousand)

	Equation 1		Egua	tion 2	Equation 3		Equation 4		Equation 5	
	Caef	t-stat	Coef	t-stat	Coef	t-stat	Coef	t-stat	Coef	t-stat
CONSTANT	-3.76	-6.88	-3.48	-6.92	-3.76	-6.88	-4.14	-7.77	-3.90	-7.49
ln(HW) [2]	0.56	7.86	0.50	7.33						
ln(UNITS)	-0.05	-0.48			0.52	10.41			0.63	12.58
YEAR [3]	0.13	22.45	0.13	22.60	0.13	22.45	0.13	22.78	0.13	23.93
UNITS			0.03	0.54			0.33	10.98		
ln(NW/unit)		~-			0.56	7.86	0.57	8.04	0.54	7.95
NE [4]									0.25	6.69
Adjusted R		0.71		0.71		0.71		0.71		0.73
F statistic		329.2		329.2		329.2		340.1		284.4

Notes: [1] The dependent variable in each equation is ln(non-fuel O&M in 1983\$)

- [2] MW = number of MegaWatt in Design Electrical Rating (DER)
- [3] YEAR = Calendar Year 1900; e.g., 1985 = 85.
- [4] NE is a dummy variable which measures whether the plant is located in the Northeast Region (defined as Handy Whitman's North Atlantic Region), where Susquehanna 2 is located. NE = 1 if located in Northeast Region, 0 if elsewhere.

TABLE 4.15: PROJECTIONS OF ANNUAL NON-FUEL OWN EXPENSE FOR SUSQUEHANNA (\$ million)

.

Year	PP&L Pr	ojections	Fra	a Equation	B-11-31-1-1		
	LINIT 1	UNIT 2				117 ?	Projections, Unit 2
	nca	inal	1983\$	noginal	1983\$	nominal	Eq.5 / PP&L
]	1]	[2]	[3]	[4]	[5]	#==##== <u>#</u>
1935	69.40	54.81	57.45	59.74	31.69	32.96	0.6013
1986	72.19	75.28	65.38	72.07	36.07	39.76	0.5281
1987	77.21	65.23	74.41	86.95	41.05	47.97	0.7353
1988	75.70	84.85	84.68	104.89	46.71	57.86	0.6820
1989	86.10	90.58	96.38	126.54	53.17	69.81	0.7707
1990	93.32	73.32	109.69	152.66	60.51	84.21	0.9024
1991	101.62	101.62	124.83	184.16	68.86	101.59	0.9997
1992	110.51	110.51	142.07	222.17	78.37	122.56	1.1090
1993	120.06	120.06	161.69	268.02	89.20	147.85	1.2314
1994	130.38	130.38	184.02	323.33	101.51	178.36	1.3681
1995	141.47	141.47	209.43	390.05	115.53	215.17	1.5210
1996	152.17	152.17	238.35	470.55	131.48	259.58	1.7059
1997	163.62	163.62	271.26	567.66	147.64	313.15	1.9138
1998	175.87	175.87	308.72	684.82	170.30	377.78	2.1481
1999	187.00	189.00	351.35	926.14	193.92	455.74	2.4113
2000	203.06	203.06	399.87	996.64	220.59	549.79	2.7076
2001	218.15	218.15	455.09	1202.32	251.05	663.26	3.0404
2002	234.18	234.18	517.93	1450.46	285.71	800.14	3.4168
2003	251.47	251.47	589.45	1749.79	325.17	965.27	3.8385
2004	269.95	269.95	670.85	2110.91	370.07	1154.48	4.3138
2005	289.67	289.67	763.49	2546.55	421.18	1404.80	4.8496
2006	310.79	310.79	868.92	3072.10	479.34	1694.71	5.4529
2007	333.33	333.33	788.71	3706.11	545.53	2044.46	6.1335
2008	357.43	357.43	1125.47	4470.96	620.86	2466.39	6.7004
2009	383.23	383.23	1280.88	5393.66	706.59	2975.39	7.7640
2010	410.78	410.78	1457.76	6506.78	804.17	3589.44	8.7381
2011	440.23	440.23	1659.06	7849.63	915.22	4330.22	9.8363
2012	471.72	471.72	1888.17	9469.60	1041.50	5223.87	11.0740
2013	505.32	505.32	2148.90	11423.90	1185.44	6301.96	12.4711
2014	541.29	541.29	2445.65	13781.52	1349.13	7602.53	14.0451
2015	579.70	579.70	2783.37	16625.70	1535.44	9171.51	15.8213
2016	620.80	620.80	3167.72	20056.84	1747.46	11064.29	17.8225
2017	664.59	664.59	3605.16	24196.10	1988.77	13347.69	20.0842
2018	713.97	713.97	4103.00	29189.59	2263.40	16102.34	22.5533
2019	769.34	769.34	4669.58	35213.62	2575.96	19425.48	25.2495
2020	831.61	831.61	5314.41	42480.88	2931.67	23434.43	28.1797
2021	901.24	901.24	6048.28	51247.91	3336.51	28270.74	31.3688
2022	482.31	482.31	6883.49	61824.26	3797.25	34105.14	70,7115

. •

Notes: [1] From: Set I, 0.4, Attachment 1, PUC Rate Case. [2] MW = 1152, UNITS = 1, NE = 1. [3] Assume 4% inflation in 1985, 6% thereafter. [4] Two-unit case (MW = 1152, UNITS = 2, NE = 1) - [2]

TABLE 4.16: NUCLEAR CAPITAL ADDITIONS

		Average
	Year	1983\$/kW-yr
		مية حد بي بيد بيد بي حد اب حد اب حد اب
All Years		
Before and Including:	72	3.46
-	73	11.82
	74	8.55
	75	8.71
	76	15.07
	77	21.06
	78	27.34
	79	14.62
	80	26.13
	81	30.97
	82	27.94
	83	31.57
Overall Average:		19.41
1978-83 Average:		26.24
Total # Observations:		477

		Extrapolation
	PP&L Capital	of (1978-1983)
Year	Additions Budget	Average
	[1]	[2]
1985	50	68,44
1986	45	73.50
1987	40	78.94
1988	35	84.78
1989	31	91.06
1990	33	97.79
1991	35	105.03
1992	38	112.80
1993	40	121.15
1994	43	130.12
1995	46	139.74
1996	48	150.09
1997	51	161.19
1998	54	173.12
1999	57	185.93
2000	60	199.69
2001	63	214.47
2002	67	230.34
2003	71	247.38
2004	75	265.69
2005	79	285.35
2006	84	306.47
2007	89	327.14
2008	74	353.50
2009	9 9	379.66
2010	105	407.75
2011	111	437.93
2012	117	470.33
2013	123	505.14
2014	131	542.52
2015	138	582.67
2016	146	625.78
2017	154	672.09
2018	130	721.83
2019	103	775.24
2020	73	832.61
2021	28	874.22
2022	10	960.39

Notes: [1] From IR I-4, Attachment 1. [2] \$ 26.24/kW x 2304 MW MGN, in 1983\$, escalating at 5.4% in 1984, 7.4% thereafter.

. ·

(

;

APPENDIX A

RESUME OF PAUL CHERNICK

~

=

ANALYSIS AND INFERENCE, INC. SRESEARCH AND CONSULTING

10 POST OFFICE SQUARE, SUITE 970 - BOSTON, MASSACHUSETTS 02109 - (617)542-0611

· · · ·

·

.

. .

CAPACITY FACTOR DATA

APPENDIX B

ANALYSIS AND INFERENCE, INC. SRESEARCH AND CONSULTING

10 POST OFFICE SQUARE, SUITE 970 ~ BOSTON, MASSACHUSETTS 02109 ~(617)542-0611

. . . .

			Age			CFe	Total
			at	Orig.	Annual	original DER	Number of
Unit	COD	Year	7/1	DER	6#H	(Calculated)	Refuelings
112 141 D1		7.0					
NIRE AL PT	DEC-07	70	0.34	610		0.07	
Nine Al Pt	Dec-64	1	1.54	610		0.07	
Nine Ai Pt	Dec-69	72	2.55	610		0.0%	
Nine Mi Pt	Dec-67	73	3.55	610		0.0%	
Nine Mi Pt	Dec-69	74	4.55	610	3296.7	61.7%	1.000
Nine Ni Pt	Dec-69	75	5.55	610	3044.7	57.0%	1.000
Nine Mi Pt	Dec-69	76	6.55	610	4112.8	76.8%	0.000
Nine Mi Pt	Dec-67	77	7.55	610	2946.0	55.12	1.000
Nine Mi Pt	Dec-69	78	8.55	610	4467.5	83.6%	0.000
Nine Ni Pt	Dec-69	79	9.55	610	3005.4	56.2%	1.000
Nine Mi Pt	Dec-69	80	10.55	610	4537.8	84.71	0.000
Nine Ni Pt	Dec-69	81	11.55	610	3270.3	61.2%	1.000
Nine Mi Pt	Dec-69	82	12.55	610	1134.8	21.27	0.000
Nine Mi Pt	Dec-69	83	13.55	610	2802.1	52.4%	0.000
Oyster Creek	Dec-69	70	0.54	650		0.0%	
Øyster Creek	Dec-69	71	1.54	650		0.0%	
Oyster Creek	Dec-69	72	2.55	650		0.0%	
Ovster Creek	Dec-67	73	3.35	650		0.0%	
Ovster Creek	Dec-69	74	4.55	650	3673.5	64.52	1,000
Ovster Creek	Dec-69	75	5.55	650	3145.8	55.2%	1.064
Ovster Creek	Dec-69	76	6.55	650	3860.3	67.62	0.936
Ovster Creek	Dec-69	77	7.55	650	3248.3	57.0%	1,000
Øyster Creek	Dec-69	78	8.55	650	3645.7	64.02	1,000
Ovster Creek	Dec-69	79	9.55	650	4563.2	80.12	0.000
Ovster Creek	Dec - 69	80	10.55	650	1957.5	34,37	1 000
Ovster Creek	Der -69	81	11.55	650	7678.3	44.27	0,000
Øvster Creek	Dec-69	87	12.55	650	2013 1	. 35 47	0,000
Ovster Creek	Dec -69	83	13.55	650	205.2	7. 47	0.595
Millstone 1	Har-71	77	1.30	490	10011	0.0%	
Millstone 1	Nar-71	73	2.30	690		0.07	
Millstone 1	Har-71	74	3.30	490	3404 2	59 57	1 000
Nilletone 1	Mar - 71	75	A 30	690	3997 0	44 E7	A 000
Millstone 1	Har-71	75	5 70	690	307710 3757 A	4,3% Li 97	1 000
Nillstone 1	Har -71	, 0 77	4 30	690	4970 2	0177% 77 07	0.000
Nillstone 1	Har-71	79	7 70	490	4454 9	77 AY	1 000
Willetnnp 1	Har -71	79	8 30	490	4001.1 7	11.0% 20 QY	1 000
Millstone 1	Har 71	20	0.00	2070	7720.7	07.0% EE 09	1.000 A 451
Willstone 1	Mar-71	00	10.30	1070	337V.L 9510.0	JJ.7% 81 74	V.4JI A EJD
Millstone 1	1151 -71 Mor_71	01 07	10.30	2010	2010.7 8070 7	41.7% L7 54	V. 347 1 000
Willetono 1	1121 -71 Mar -71	07	11,30	670 200	TV/0.3 5758 7	07.3% DD /4	1.000
Hillstone i Hosticallo	nar -/1 Jul -71	20	12.30 A GL	07V 535	JJJJ7.2	00.04	4.444
Monticello	001-71 Tul-71	75	V#70 1 OL	373 585		0.0%	:
Monticalla	311-71	73	1.79 7 CL	ವ¶ವ ೯≛೯	מ דרפף	U.U.4 2 * ***	1 000
Nonticollo	111-71 1113-71	74	1.70 7 DL	373 515	1713.3 2070 5	01.24 // 74	1.000
Monticellu Monticello	Jul -71	13	J.70 1 07	343 Eae	1017.3 7001 1	6V.34 07 77	2.000
Monticello	uu1−/1 1u1_7t	/0 77	4,7/ 5 07	575	3788.9 7510 D	00.0% 71 04	U.UUU
Monticellu	Jul -/ 1	// 70	ידינ דיט ג	545	J400.7 3051 7	/9.84 DA 04	1.000
Monticello	3u1-/1	70 07	0,7/ 707	373 F3F	1030.) 1700 /	45.05	1.000
Monticalla	JUL-/1 77 71	17	1.11	343 212	7357.0	72.26	0.000
nunciceilu	JUI -/1	60	0.7/	343	3433.8	12.14	1.000

Page 1

			Age			CFe	Total
			at	Orig.	Annual	original DER	Number of
Unit	COD	Year	7/1	DER	6¥H	(Calculated)	Refuelings
Monticello	Jul-71	81	9.97	545	3257.8	68.21	1.000
Monticello	Jul-71	82	10.97	545	2420.8	50.7%	1.000
Monticello	Jul-71	83	11.97	545	4147.7	86.92	0.000
Dresden 3	Nov-71	72	0.63	809		0.0%	
Dresden 3	Nov-71	73	1.63	809		0.0%	
Dresden 3	Nov-71	74	2.63	809	3200.3	45.2%	1.000
Dresden 3	Nov-71	75	3.63	809	2190.0	30.9%	1.000
Dresden 3	Nov-71	76	4.63	809	4034.5	56.8%	1.000
Dresden 3	Nov-71	77	5.63	809	5186.3	73.2%	0.000
Dresden 3	Nov-71	78	6.63	809	3831.7	54,1%	1.000
Dresden 3	Nev-71	79	7.63	809	3475.8	49.0%	0.000
Dresden 3	Nov-71	80	8.63	809	4329.6	60.9%	1.000
Dresden 3	Nov-71	81	9.63	809	5177.6	73.12	0.000
Dresden 3	Nov-71	82	10.63	809	3887.9	54.9%	1.000
Dresden 3	Nov-71	83	11.63	809	4147.9	58.5%	0.503
Dresden 2	Jun-72	73	1.04	809		0.07	
Dresden 2	Jun-72	74	2.04	809	3379.6	47.7%	0.301
Dresden 2	Jun-72	75	3.04	809	2966.1	41.9%	0.699
Dresden 2	Jun-72	76	4.05	809	4371.6	61.5%	1.000
Dresden 2	Jun-72	77	5.05	307	3532.5	49.8%	1.000
Dresden 2	Jun-72	78	6.05	809	5704.4	80.5%	0.000
Dresden 2	Jun-72	79	7.05	809	4939.6	59.72	1.000
Dresden 2	Jun-72	80	8.05	809	4580.9	64.5%	0.000
Dresden 2	Jun-72	81	9.05	809	3407.9	48.1%	1.000
Dresden 2	Jun-72	82	10.05	809	5123.0	72.3%	0.000
Dresden 2	Jun-72	83	11.05	809	3397.5	47.9%	1.000
Versont Yankee	Nev-72	73	0.62	514		0.07	
Vermont Yankee	Nov-72	74	1.62	514	2482.6	55.1%	1.000
Versont Yankee	Nov-72	75	2.62	514	3561.2	79,12	0.000
Verzont Yankee	Nov-72	76	3.63	514	3260.0	72.2%	1.000
Versont Yankee	Nov-72	77	4.63	514	3537.7	78.52	1.000
Ver∎ont Yankee	Nov-72	78	5.63	514	3240.7	72.0%	1.000
Verzont Yankee	Nov-72	79	6.63	514	3448.8	76.6%	1.000
Ver≊ont Yankee	Hov-72	80	7.63	514	2979.2	66.0%	1.000
Vermont Yankee	Nov-72	81	8.63	514	3568.7	79.3%	1.000
Ver≊ont Yankee	Nov-72	82	9.63	514	4174.3	92.7%	0.000
Ver≞ont Yankee	Nov-72	83	10.63	514	2874.5	63.8%	1.000
Filgrim 1	Dec-72	73	0,58	670		0.0%	
Pilgria 1	Dec-72	74	1.58	670	1973.0	33.6%	0.000
Pilgrim 1	Dec-72	75	2.58	670	2587.2	44,1%	0.000
Pilgri m 1	Dec-72	76	3.58	670	2415.5	41.02	1.000
Pilgrim 1	Dec-72	77	4,58	670	2652.1	45.2%	1.000
Pilgrim I	Dec-72	78	5.58	670	4736.7	80.71	0.000
Pilgrim 1	Dec-72	79	6.58	670	4844.4	82.5%	0.000
Pilgrim 1	Dec-72	80	7.59	670	3044.5	51.72	1.000
Pilgrim 1	Dec-72	81	8.59	670	3443.9	58.72	0.499
Pilgria 1	Dec-72	82	9.59	670	3287.0	56.02	0.501
Pilgrim 1	Dec-72	83	10.59	670	4711.9	80.32	0.078
Quad Cities 1	Feb-73	74	1.37	809	3562.9	50.32	1.000
Quad Cities 1	Feb-73	75	2.37	809	4270.9	60.3Z	0.000

Page 2

			Age			CFe	Total
			at	Orig.	Annual	original DER	Number of
Unit	COD	Year	· 7/1	DER	6ÅH	(Calculated)	Refuelings
Quad Cities 1	Feb-73	76	3.38	809	3393.1	47.7%	1.000
Quad Cities 1	Feb-73	77	4.38	807	3520.7	49.7%	1.000
Quad Cities 1	Feb-73	78	5.38	809	4721.1	66.6%	0.000
Quad Cities 1	Feb-73	79	6.38	809	4783.0	67.5%	1.000
Quad Cities 1	Feb-73	80	7.38	809	3441.7	48.4%	1.000
Quad Cities 1	Feb-73	81	8.38	809	5726.8	80.82	0.000
Quad Cities 1	Feb-73	82	9.38	807	3244.8	45.8%	1.000
Quad Cities 1	Feb-73	83	10.38	809	5776.4	81.5%	0.000
Quad Cities 2	Har-73	74	1.30	809	4469.7	63.1%	0.068
Quad Cities 2	Mar-73	75	2.30	807	2745.3	38.7%	0.932
Quad Cities 2	Har-73	76	3.30	807	4304.7	60.5%	1.000
Quad Cities 2	Mar -73	77	4.30	809	4349.3	61.71	0.000
Auad Cities 2	Har-73	78	5.30	809	4426.5	62.5%	1.000
Buad Cities 2	Nar-73	79	6.30	809	3981.1	56.2%	0.250
Quad Cities 2	Har-73	80	7.30	809	3614.4	50.9%	0.750
Auad Citics 2	Har -73	81	8.30	909	3757.5	53.27	1,000
Quad Cities 2	Har-73	82	07 Q	909	5059.0	71.47	0.000
Duad Cities 2	Hor-73	83	10 30	909	3151.3	AA. 57	0.709
Poorb Bottom 7	Nai 70 Nov-74	75	1 13	1045	5097 5	54.57	0,000
Peach Bottom 7	11ay 21 Hov-74	76	7 13	1045	5549 4	5,0 5,7	1 000
Peach Bottom 2	нау 71 Нау-72	70	7 17	1065	1027 1	47.17	1 000
Peach Bottom 2	May 74	78	4 17	1000	4797 9	72.87	1 000
Posch Pottog 7	Hay 77 Hay-78	, G 79	5 13	1000	9754 4	97 97	0 000
Peach Bottom 2	Nay 74 Nav-74	90	4 17	1045	A747 0	1070A AA AY	1 000
Posch Dotton 7	1147 17 Nov=74	91 91	7 13	1045	4471 1	71 17	0.000
Peach Bottom 2	Nay in Nov-74	92	9.13	1065	4794 4	51 47	1 000
Posch Bottom 2	May-74	01 07	0.13	1003	4451 Z	47 77	0.000
Conner	11ay - 1-1 .1.1 - 74	83 75	7.13 A QL	779	7951.5 7957 4	54 57	0.000
Cooper	101-73	71	1 01	סוו פרר	7633.0	55,54	1 000
Copper	341-74	78	1.70	778 077	3841.3 AEAA 1	10105 LL LY	1.000
Cooper	311-74	ו (סד	7 01	270 277	AGGL 4	71 77	1.000
Cooper	341-74	70 70	3.70	110 077	1000.0 1001 0	11.13. 77 74	1.000
Cooper	341-74	77 GA	7.75	יזי ברד	1,1777 1 0077	70.02 RF 14	1.000
Cooper	1411-74 141-74	90 01	4.77 L 07	011 0770	3700.1 7051 A	ت. ج. ب. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲.	1.000
Cooper	3417/ 1 761_78	01 07	0.7/ 707	779 077	5031.V 5778 t	J0.J1 77 14	1.000
Cooper	341-74	82 07	7.77	נון פלך	31/0-1 7787 7	//**** 40 14	1.000
Cooper Reason Francis	JU1-/4	03 75	0.7/ A 00	1000	1717 0	47±14 +3 AV	1.000
Browns Ferry 1	HUG-/4	73	V.88	1078	134/.7	14.44	0.000
Browns Ferry 1	Aug-74	/0	1.88	1078	1301.2	13.34	0.000
Browns Ferry 1	HUG-14	11	2.88	1078	3043.3	32.74	0.862
Browns Ferry 1	HUG-/4	78	3.88	1078	381/.7	5V.34	0.138
Browns Ferry I	Aug-/4	/4	4.88	1078	/4/3./	11.9%	0.338
Browns Ferry 1	Aug-/4	80	3.88	1078	6061.8	62.9%	1.000
Browns Ferry I	Aug-/4	81	6.88	1048	4403.1	43.84	1.000
Browns Ferry 1	Aug-74	82	/.88	1048	/880.4	81.92	0.000
Browns Ferry 1	Aug-74	83	8.38	1078	21/5.5	22.67	0.995
reach Bottom 3	Dec-/4	/5	0.34	1063	5282.3	56.62	0.000
reach Bottom 3	9ec-74	/6	1.55	1965	5047.5	64./2	U.436
Yeach Bottom 3	Dec-74	77	2.55	1065	4/73.9	51.21	0.564
Peach Bottom 3	Dec-74	78	3.55	1065	6966.1	74.71	1.000
Peach Bottom 3	Dec-74	79	4.55	1065	6101.7	65.4%	1.000

Page 3

;

			Age			CFe	Total
			at	Orig.	Annual	original DER	Number of
Unit	COD	Year	7/1	DER	6WH	(Calculated)	Refuelings
Peach Bottom 3	Dec-74	80	5.55	1065	7233.8	77.3%	0.000
Peach Bottom 3	Dec-74	81	6.55	1065	3131.8	33.6%	1.000
Peach Bottom 3	Dec-74	82	7,55	1065	8532.3	91.5%	0.000
Peach Bottom 3	Dec-74	83	8.55	1065	2421.0	26.0%	1.000
Duane Arnold	Feb-75	76	1.38	538	2489.3	52.7%	1.000
Duane Arnold	Feb-75	77	2.38	538	2879.3	61.5%	1.000
Duane Arnold	Feb-75	78	3.38	538	1227.6	26.0%	1.000
Duane Arnold	Feb-75	79	4.38	538	2898.8	61.5%	0.000
Duane Arnold	Feb-75	80	5.38	538	2770.0	58.6%	1.000
Duane Arnold	Feb-75	81	6.38	538	2219,5	47.12	1.000
Duane Arnold	Feb-75	82	7.38	538	2280.5	48.4%	0.000
Duane Arnold	Feb-75	83	8.38	538	2324.3	49.32	1.000
Browns Ferry 2	Nar-75	76	1.30	1098	1567.2	16.21	0.000
Browns Ferry 2	Har-75	77	2.30	1098	6225.0	64.7%	0.000
Browns Ferry 2	Har-75	78	3.30	1098	5547.4	57.71	1.000
Browns Ferry 2	Mar-75	79	4.30	1098	7441.3	77.4%	1.000
Browns Ferry 2	Har-75	80	5.30	1098	5618.8	58.3%	1.000
Browns Ferry 2	Har-75	81	6.30	1073	7471.8	77.71	0.000
Browns Ferry 2	Nar-75	82	7.30	1098	4450.9	46.3%	0.564
Browns Ferry 2	Mar-75	83	8.30	1078	6385.5	66.4%	0.336
Fitznatrick	Jul-75	76	0.96	821	4156.3	57.5%	0.000
Fitzpatrick	Jul-75	77	1.95	821	3893.3	54.1%	1.000
Fitzpatrick	Jul-75	78	2.95	821	4197.3	58.4%	1.000
Fitzpatrick	Jul-75	79	3.95	821	2964.6	41.2%	0.000
Fitzpatrick	Jul -75	80	4.97	821	4334.5	60.1%	1.000
Fitzpatrick	Jul-75	81	5.97	821	4779.7	66.5%	0.477
Fitzpatrick	Jul-75	82	6.97	821	4959.7	69.0%	0.523
Fitzpatrick	Jul-75	83	7,97	821	4634.3	64.4%	1.000
Brunswick 2	Nov-75	76	0.63	821	2486.5	34.5%	0.000
Brunswick 2	Nov-75	77	1.63	821	2436.6	33.9%	1.000
Brunswick 2	Nov-75	78	2.63	821	4794.4	66.7%	0.000
Brunswick 2	Nov-75	79	3.63	821	3652.3	50.9%	1.000
Brunswick 2	Nov-75	80	4.63	821	1865.0	25.9%	0.000
Brunswick 2	Nov-75	81	5.63	821	3284.0	45.7%	0.000
Brunswick 2	Nov-75	82	6.63	821	1910.1	26.6%	1.000
Brunswick 2	Nov-75	83	7.63	821	3935.7	54.7%	0.000
Hatch 1	Dec-75	76	0.55	785	4133.8	59.9%	0.000
Hatch 1	Dec-75	77	1.55	786	3713.0	53.9%	1.000
Hatch 1	Dec-75	78	2.55	786	4227.3	61.4%	1.000
Hatch 1	Dec-75	79	3.55	786	3337.9	48.5%	1.000
Hatch 1	Dec-75	80	4.55	786	4790.5	69.42	0.000
Hatch 1	Dec-75	81	5.55	785	2756.3	40.0%	1.000
Hatch 1	Dec-75	82	6.55	786	2877.5	41.37	0.615
Hatch 1	Dec-75	83	7.55	786	3964.1	57.6%	0.385
Browns Ferry 3	Har-77	78	1.33	1078	5554.3	57.7%	1.000
Browns Ferry 3	Har-77	79	2.33	1099	5482.6	57.01	1.000
Browns Ferry 3	Mar-77	80	3.34	1098	6936.6	71.91	0.684
Browns Ferry 3	Har-77	81	4.34	1078	6246.6	64.9%	0.695
Browns Ferry 3	Mar-77	82	5.34	1098	4892.9	50.91	0.532
Browns Ferry 3	Har-77	83	6.34	1098	5394.4	56.17	0.332

Page 4

			Age			CFe	Total
			at	Orig.	Annual	original DER	Number of
Unit	COD	Year	7/1	DER	6ÅH	(Calculated)	Refuelings
Brunswick 1	Mar-77	78	1.29	821	5122.8	71.27	0.000
Brunswick 1	Nar-77	79	2.29	821	3169.2	44.12	1.000
Brunswick 1	Har-77	80	3.29	821	3939.6	54.6%	1.000
Brunswick 1	Mar-77	81	4.29	821	2556.1	35.5%	0.000
Brunswick 1	Har -77	82	5.29	821	2921.6	40.6%	0.081
Brunswick 1	Har -77	83	6.29	821	1388.7	19.32	0.919
Hatch 2	Sep-79	80	0.82	795	3645.0	52.27	0.539
Hatch 2	Sep-79	81	1.82	795	4478.4	64.3%	0.461
Hatch 2	Sep-79	82	2.82	795	3728.3	53.5%	1.000
Hatch 2	Sep-79	83	3,82	795	3809.5	54.7%	1.000

Page 5

e ...

OCA St. 3-A

COMMONWEALTH OF PENNSYLVANIA BEFORE THE PUBLIC UTILITY COMMISSION

THE PENNSYLVANIA PUBLIC UTILITIES COMMISSION V. PENNSYLVANIA POWER & LIGHT COMPANY

. .

Docket No. R-842651

SURREBUTTAL TESTIMONY OF PAUL CHERNICK ON BEHALF OF THE PENNSYLVANIA OFFICE OF CONSUMER ADVOCATE

CONCERNING THE COSTS AND BENEFITS OF THE SUSQUEHANNA-2 NUCLEAR GENERATING STATION

λ

December, 1984

Table of Contents

3	_	THE	REBUTTAL	TESTIMONY	OF	MR.	CURTIS	7
4	_	THE	REBUTTAL	TESTIMONY	OF	MR.	KENYON	13
5	_	THE	REBUTTAL	TESTIMONY	OF	MR.	HECHT	16
6		THE	REBUTTAL	TESTIMONY	OF	MR.	KOPPE	29

Attachment 1 Attachment 2

Rebuttal Testimony of Paul Chernick on Behalf of the Consumer Advocate

- Q: Are you the same Paul Chernick who testified previosly in this proceeding?
- A: Yes.
- Q: What is the purpose of your testimony?
- A: I will respond to issues raised by various PP&L witnesses in their rebuttal testimony. The time available for preparation of this testimony precludes detailed responses to all of the points addressed by the PP&L witnesses, so I will concentrate on correcting major mischaracterizations of my testimony, and explaining the differences between my approaches and those of PP&L.
- Q: How does your approach to assessing the economics of SSES 2, and evaluating the ratemaking options related to that unit, differ from the approach of the PP&L witnesses?
- A: I believe that it is useful to focus on three major differences. First, the projections of SSES 2 costs which I present simply continue historical experience, measured in various ways, while the PP&L projections assume various improvements over that experience. Second, while my analyses

- 1 -

rely almost entirely on publicly available data, the PP&L witnesses rely heavily on engineering judgement, which has been consistently incorrect and over-optimistic in projecting virtually all aspects of nuclear power costs. Third, I do not believe that it is fair to greatly increase the rates to today's PP&L customers to pay for SSES 2, even if the unit eventually provides considerable savings to customers in some other decade or century; the PP&L witnesses who address ratemaking claim that the mere demonstration of any net saving over the unit's life justifies charging current customers whatever the plant cost to construct.

- Q: What kinds of improvements in the historical experience do the PP&L witnesses assume?
- A: They generally claim that capital additions will be small, that O&M growth will be lower, and that capacity factors will be larger than observed in the past. These assertions are based on the assumptions that
 - the experience of other plants was due to their immature design, and that those design problems have been solved at SSES,
 - the pool of potential nuclear problems is relatively small and has been substantially depleted by the events of the last decade (i.e., most of the bad things which could happen to nuclear plants, have happened), and

- 2 -

- NRC regulatory actions, which contributed to all these costs, have now slowed down, and will fall off to a low and stable level, never again causing the kinds of problems seen in the past.
- Q: Do you believe that these assumptions are correct?
- A: I certainly hope that they are correct, but I suspect that all of these assumptions are (at best) overstated. However, the important question with regard to these issues is not "What is most likely to happen?", for we all know that there is tremendous uncertainty in any projection related to nuclear power, but "Who should bear the risk that these improvements will not occur?" PP&L claims to be confident that the future of nuclear power will be more favorable than the past, but it is adamant in insisting that today's ratepayers (rather than future ratepayers, or PP&L shareholders) assume the risk of the actual outcome, by paying much more for SSES 2 than it is worth to them, for each of the next several years.
- Q: How do the PP&L witnesses rely on engineering judgement, as contrasted with published data?
- A: There are several such examples, some of which I will touch on in subsequent sections. It is striking that, other than a couple of Mr. Koppe's calculations, the PP&L rebuttal testimony is almost devoid of data or calculations, even

- 3 -

where very specific numerical assertions are made. In some cases, there is an implication that a specific computation has been carried out, but it is not provided. In other cases, the data is apparently proprietary, and its nature may not even be explicitly stated. One striking example of this sort is the repeated claim that NRC regulation has slowed down: no factual basis is offered for this assertions, despite the fact that it is a crucial element in the arguments of at least three witnesses.

The extreme example of resorting to engineering judgement lies in Mr. Curtis' conclusion that SSES will last 40 years **because GE and Bechtel say it will**.¹ Both GE and Bechtel have been so wrong so often about nuclear plant costs, that their opinions on this subject are virtually valueless. The limited data available (from the small plants of the early and middle 1960's) indicates that average nuclear unit life is running around 20 years: the oldest unit of more than 500 MW (Connecticut Yankee) will complete 17 years of commercial

· · · · ·

^{1.} The fact that the letters presenting these opinions are the only attachments to the rebuttal of any of the witnesses on SSES issues, which are generally very quantitative, might cause one to wonder about how PP&L determines what sort of evidence is worth examining in detail. I, for one, would have been glad to accept Mr. Curtis' assertion that GE and Bechtel have promised (but not guaranteed) that SSES will run for 40 years, since both companies have promised other, even less likely things in the past. I would have been much more interested in how Mr. Curtis purports to measure the number and severity of new and outstanding nuclear safety issues.

operation on New Year's Day. Projecting nuclear power plant useful lives of more than 20 years requires some optimism, and projecting them to reach beyond 30 years seems to be little more than speculation, no matter how many testimonials PP&L collects from its vendors.

- Q: What is the basic difference between your approach to ratemaking and that of PP&L?
- A: PP&L's position, as expressed by Mr. Hecht, is that PP&L should be allowed to immediately charge ratepayers for whatever Susquehanna cost to build, provided that it will <u>someday</u> have positive present value benefits to customers as a whole. My position is that SSES should not greatly burden ratepayers in the 1980's to lower rates to customers in the next century: if customers are to pay for SSES 2, it should be the customers who will actually enjoy the benefits it may someday offer.
- Q: How is the rest of your testimony organized?
- A: I will briefly touch on some of the points raised by

- Mr. Curtis,

- Mr. Kenyon,
- Mr. Hecht, and

- and Mr. Koppe,

- 5 -

in that order.

.

.

- - **t**

•

ł

.

- 6 -

×.,

•

3 - THE REBUTTAL TESTIMONY OF MR. CURTIS

- Q: What responses do you have to Mr. Curtis' rebuttal?
- A: Very few. Mr. Curtis basically repeats the assertions that things are getting better, and will be better still in the future, without any substantial documentation. He freely admits that his perceptions are based on little more than his "experience and knowledge" (page 1, line 26) of the nuclear industry. Hence, there is little that requires any response, other than to note that, if PP&L is as confident as Mr. Curtis claims to be, it should not object strongly to delaying its cost recovery for SSES 2 to match the benefits of the plant, since it would believe that the costs were small and that the benefits were large and close at hand. There are a few points which require some response, however.
- Q: What are those points?
- A: First, Mr. Curtis cites as evidence of the improved environment for nuclear power "the slowing down of reactor design development" and the assertion that "current regulatory levels are below past levels". He provides no evidence (or even an operational definition) for either of these statements. Reactor design development may well have slowed down, or even stopped, since there has been no new

- 7 -

order for a nuclear unit in the US since 1978, and since there is no reasonable prospect of new orders in most of the next decade, but it is not clear how this improves the economics of SSES. I doubt that Mr. Curtis really means what he appears to be saying in the second quote, which is that the NRC will now tolerate designs and operating procedures which were not previously acceptable: in any case, Mr. Curtis has not demonstrated that either of these phenomena (whatever he means by these terms) have occurred or are relevant to SSES economics.

- Q: Have you seen any evidence that NRC regulations have been decreased in number or severity, as they affect nuclear operating costs and capacity factors?
- A: Not in this proceeding. The most recent tabulation of NRC regulations which I have seen is attached to this testimony as Attachment 1: it was provided by a consortium of Massachusetts utilities² in support of a contention similar to PP&L's in this case: that regulation had stabilized and that capacity factors would thus recover to levels better than any previously experienced. This document shows two things. First, while the number of some kinds of NRC documents is decreasing (some types have been phased out

· -

^{2.} The New England Power Company, the Massachusetts Municipal Wholesale Electric Company, Canal Electric Company, and Fitchburg Gas and Electric, in the generic Seabrook 1 investigation, MDPU 84-152.

completely), others continue to rise, and it is difficult to determine how these changes may affect short-run and long-run cost and performance trends. Second, while the total number of new recent safety-related documents is slightly lower than that immediately following the TMI accident, it is still higher than the annual rates of new documents in the pre-TMI period, which was also characterized by high rates of O&M cost increases and capacity factors much lower than previously expected. This data runs through 1983; it is hard to imagine that the 1984 results could establish any trend, let alone a "clear downward trend."

- Q: If the number of new regulatory actions fell to zero, would the effects of regulation on nuclear costs and performance stop?
- A: Not immediately. A review by Northeast Utilities of the reasons for the 1982 increase in the cost estimate for its Millstone 3 nuclear plant, planned to go on line in 1986, found that regulatory actions from as far back as 1974 had resulted in increases in the 1982 cost estimate, despite the fact that there had been several other cost revisions in the interim, including one as recently as 1980. Since regulatory changes generally affect the design of new units before they affect capacity factors and capital additions of operating units (which requires that changes actually be made, rather than just planned), we must expect several more years of effects from regulatory changes which have already occurred. Of course, no one is projecting that the NRC will stop producing new regulations soon.

- 9 -

- Q: To what other statements of Mr. Curtis do you wish to respond?
- A: Mr. Curtis accuses me of being "inconsistent" in my application of recent capital additions, because he found an older piece of testimony in which I used all capital additions data, rather than the higher level of additions which has prevailed since 1977. This is a silly complaint: as I explain in my testimony, and as illustrated in Figure 4.2, the level of annual additions has clearly increased since the early 1970's. Since I performed the analysis described in my testimony, I have consistently used the results, rather than the simple cumulative average I used previously. I have attached the relevant portions of my most recent testimony on Seabrook (as Attachment 2), to illustrate this point.

Mr. Curtis also asserts that various other factors, such as multi-unit status and plant size, affect the level of capital additions per kW-year. These are interesting claims, and if properly supported by statistical analyses, would suggest improvements in my estimates. Unfortunately, while Mr. Curtis claims to have conducted a "careful analysis", he does not provide any analysis, but only a couple of summary results.³ One of these results is an averge for a subset of

3. Actually, both of his results refer to the effects of multiunit plants, even though he claims to have found some economies plants for a single year, 1983, without any tests of the significance of the difference between that year and other years. Mr. Curtis also is very selective in the issues he addresses: he does not consider whether the "multi-unit" effect is actually an "experienced nuclear utility" effect, related to the large number of multi-unit plants owned by the leading nuclear utilities, such as Commonwealth Edison, TVA, and Duke, nor does he attempt to correct for regional cost differences.

When I started to calculate capital additions for nuclear units, in 1979, I was (to my knowledge) the only analyst to be conducting such analyses. Until performing the study presented in my testimony, I used a simple average of all past capital additions in dollars/kW-year, since I recognized that the variability of annual additions would make it difficult to identify any trends in the data. For my direct testimony, I added an analysis of the trend of additions over time. If Mr. Curtis believes that a thorough, "careful" statistical analysis of capital additions over time will reveal significant economies of scale and economies of duplication, he is welcome to perform such an analysis, correcting for such other variables as location, and perhaps unit design (e.g., PWR versus BWR). The results, if

of scale, as well.

- 11 -
presented in a reviewable form, could be a significant contribution to our understanding of patterns of capital additions. Mr. Curtis does nothing of the sort in his rebuttal.

- Q: Do you have any other comments on Mr. Curtis' rebuttal?
- A: I would just note that my introduction discussed Mr. Curtis' curious approach to estimating plant lifetime. In addition, his rebuttal asserts that previous licensing practice "resulted in only 30 years of actual operation", even though no domestic commercial reactors have operated nearly that long, and those which have been retired early have been retired for reasons unrelated to NRC licensing practice.

4 - THE REBUTTAL TESTIMONY OF MR. KENYON

- Q: What responses do you have to Mr. Kenyon's rebuttal?
- A: Mr. Kenyon, like Mr. Curtis, asserts that "the known causes of historical growth [in nuclear O&M] are on a clear downward trend", but provides no documentation to support this claim. He also cites Mr. Curtis' testimony as a basis for his position, even though Mr. Curtis also does not provide any evidence for this alleged trend.

Mr. Kenyon also suggests that I erred in not using capacity factor data from SSES (in projecting capacity factors for SSES 2: he rather testily claims that I "chose to ignore" SSES 1. Since my analysis used (and could use) only full calendar years of commercial operation data, SSES 1 data was not available, and will not be available until some time next year, when 1984 data is released. Mr. Kenyon does not indicate how he thinks this data could be incorporated into an analysis of national BWR data.

Q: Is the SSES 1 data very valuable in projecting SSES 2 capacity factors?

A: Not yet. SSES 1 has operated for a very short time, and many

- 13 -

nuclear units have achieved high capacity factors initially, only to full to average performance (or worse) in later years. Furthermore, SSES 1 has not yet completed its first refueling, which generally brings down the average capacity factor substantially. In particular, Mr. Kenyon's suggestion that the SSES 2 tie-in outage be "excluded"⁴ in calculating SSES 1 capacity factor must be rejected: we have no way of knowing what maintenance outages would have been required if not for the tie-in outage.

- Q: What other problems are there in Mr. Kenyon's rebuttal?
- A: Mr. Kenyon criticizes me for improving on earlier, more naive analyses of nuclear O&M in which I did not reflect the effect of size on O&M cost. He also makes some absurd calculations on the O&M costs which would result from the continuation of the historic O&M trends to the year 2022. As I note in my testimony, continuation of this trend would result in the retirement of the plant much earlier (sometime around 2010), when the O&M cost was only a tenth of the values Mr. Kenyon discusses. In addition, I recognize that projection of continued increases in O&M expenses (based on 15 years of data) for more than 15 years into the future is speculative, but even continuation of the trend through the end of the century would eliminate most or all of the projected benefits

4. Mr. Kenyon does not explain how he performs this exclusion

- 14 -

of SSES 2. Furthermore, while projection of these high rates of O&M growth for very long periods are speculative, they are no more so than PP&L's projection of essentially no real growth.

- Q: Does Mr. Kenyon make any useful suggestions?
- A: Yes. He notes that O&M expenses vary with refueling schedules, which is probably true. It would be interesting to rerun the regressions with a refueling variable added, and I will do so when time allows. However, since O&M has increased rapidly for units which are more than two or three years old, we may reject Mr. Kenyon's suggestion that much of the time trend in the data is due to the first refueling effect. In addition, many PWR's and some BWR's do refuel in the first full year of commercial operation.

5 - THE REBUTTAL TESTIMONY OF MR. HECHT

- Q: What responses do you have to Mr. Hecht's rebuttal?
- A: There are nine topics I would like to address related to his testimony. These are
 - his confusion of excess capacity and excess costs,
 - his unsupported and misleading comments on inter-generational equity,
 - his confusions about the time value of money,
 - his confusion of unit lifetime cost-effectiveness with current benefits to ratepayers,
 - his misrepresentations of my ratemaking recommendations,
 - his misleading statements about the reliability value of SSES 2,
 - his reliance on Mr. Curtis' unsupported testimony,
 - his effective admission that PP&L has overstated the benefits of SSES 2 power, and
 - his comments on the importance of other PJM nuclear plant capacity factors on SSES 2 operating savings.

- 16 -

Q: How does Mr. Hecht confuse excess capacity with excess costs?

Even if every MW of SSES were needed for reliability, its A: cost would be excessive unless it had some large economic benefits, and SSES would not be a problem at all if it produced benefits in the next few years comparable to its costs, even if PP&L had a large margin of excess reserves. Mr. Hecht repeatedly confuses excess MW's with excess This is the basis for his assertion that the dollars. system is the problem, not the unit, and that therefore any adjustment must be made on a system basis. The existing system (except for SSES 1) is not the problem: it is the high costs and low short-run benefits of SSES which are the problems, and to which ratemaking must be addressed. The Commission's slice-of-system adjustment for SSES 1 was exceedingly generous to PP&L, and resulted in higher rates for customers in this decade than if Unit 1 had never existed. I see no reason to repeat this treatment: if anything, the Commission's generosity in the SSES 1 case

- 17 -

argues for a higher standard in this case.⁵

- Q: What are Mr. Hecht's unsupported and misleading comments on inter-generational equity?
- A: Mr. Hecht compares the situation of the customers whose rates will be raised for several years by SSES to the customers who paid for the early years of Brunner Island and Montour. However, he does not even claim that rates increased when those units entered service, compared to what rates would have been without the units, let alone demonstrate that the increases (assuming that there were any) were comparable to those caused by SSES. Since PP&L cross-examined me on the relevance of these plants, and their ratemaking, to the ratemaking for SSES 2, Mr. Hecht has had ample time to perform this comparison. It is highly unlikely tha the effect of any unit at either of these plants was comparable to that of SSES 2.

Even assuming that earlier generations of utility customers had suffered higher rates, to produce lower rates in the 1980's, it would not follow that this pattern makes sense or

^{5.} Mr. Hecht argues on page 4 that all PP&L capacity is equally excess, if any is, and that the system adjustment would therefore be fair. The gas turbines, which can be brought into service in a year or two, and even the fossil steam plants which required a several years from order to operation, would never have resulted in excess capacity on the scale that SSES has, with its long construction period.

is fair. If the sort of rate effects caused by SSES occurred in the past, there is now no way to compensate the customers who suffered in the 1960's (if they did) to produce lower rates in the 1980's, except for those customers who have remained on the system, and are now receiving the benefits of the older plants. Even those surviving customers would be denied full compensation if they were now compelled to pay for SSES 2, to provide lower rates in the next century. Charging much more for SSES 2 now than it is currently worth can only harm present customers for the benefit of future customers.

Mr. Hecht suggests that, if the costs of SSES 2 were spread out to fairly match the benefits from the unit, customers in the next century would have to pay both for SSES 2 and for the next set of units.⁶ I see no reason why that should be the case. If and when other units enter service which are (at least for several years) uneconomical and unnecessary, they should be treated in much the same way as I have recommended that SSES 2 be treated. There is no reason for customers in the 1980's to pay higher bills to subsidize lower rates for customers in 2010, and there is no reason for

6. Mr. Hecht apparently expects all future units to be as uneconomical as SSES when they enter service: this strikes me as an inordinately gloomy view of the world, from a person who is quite optimistic about the often disappointing economics of nuclear generating plants.

customers in 2010 to subsidize those in 2035.

Q: How is Mr. Hecht confused about the time value of money?

There are two basic problems. First, Mr. Hecht insists that A: the after-tax cost of capital is PP&L's cost of money, and that this rate should be used as PP&L's discount rate. As I carefully explained in my direct testimony, and illustrated in Table 4.11, if PP&L ratebases one dollar, rather than expensing it, the additional cost to the ratepayer's is the total cost of capital, <u>plus</u> taxes on the equity portion: the customers must pay both the cost of capital, and the associated taxes, in order to defer consumption by a year. Thus, as measured by Mr. Hecht's approach, the discount rate for PP&L is the total cost of money, plus taxes. Mr. Hecht adds no new analysis to his original incorrect assertion, and certainly does not perform a numerical analysis similar to my Table 4.11, so I can not determine why he is still confused about this point.

Second, Mr. Hecht agrees that consumers do not have the same discount rates as PP&L, and agrees that consumers may well use discount rates similar to those I discuss in determining whether to spend more money now so as to reduce energy costs later (page 19, lines 7 - 13). If the Commission also finds that I have properly estimated consumer discount rates, then the issue of what rates to use in discounting is solved,

- 20 -

1

since PP&L is asking consumers to pay now, so as to save later. Since comparable choices are involved, for the same consumers, the same rates (at least 15%) should be used. Mr. Hecht rejects this suggestion without offerring any intelligible reason for doing so, and throws out the following non sequiteur

PP&L has to make decisions that represent the balance of customers' interest over time, and in so doing, can't construct a number of small power plants and economically optimize each power plant for each customer that might have a different personal finance situation.

Of course, no one suggested any such thing. Some sort of average consumer discount rate must be used, and my 15% rate is as low as the average could possibly be expected to be. Mr. Hecht has not disputed the Hausman results for the discount rates for residential customers, nor has he suggested the many of PP&L's industrial or commercial customers would accept conservation investments with paybacks of more than six years, as implied by the 15% discount rate, let alone the 10 years suggested by PP&L's proposed 10% discount rate.

- Q: How does Mr. Hecht confuse unit lifetime cost-effectiveness with current benefits to ratepayers?
- A: Mr. Hecht repeatedly insists that there is no problem, and no special ratemaking is required, if SSES 2 is cost-effective over its lifetime. While that outcome is by no means as

certain as Mr. Hecht would have us believe, it is not really the current issue. What the Commission must decide in this case is how much PP&L ratepayers will pay next year: whether or not SSES 2 is cost-effective in 1999, it will certainly not be cost-effective for customer in 1985 under PP&L's rate proposal.

- Q: How does Mr. Hecht misrepresent your ratemaking recommendations?
- First, he asserts that I fail "to recognize that SSES will A: provide real benefits to PP&L's customers", even though I explicitly recommend that PP&L be allowed to collect base rates equivalent to the current benefits to the customers. Second, as noted above, he claims that I equate excess capacity with the need for a ratemaking adjustment, which is simply untrue. Third, he describes my very modest and reasonable proposal for matching costs and benefits as "arbitrary", even though it addresses the most fundamental issues of equity. Fourth, he claims that I have proposed that "customers . . . receive the benefits of the plant without incurring the associated cost obligation", when I have clearly proposed that customers incur a cost obligation equivalent to the benefits they receive. Fourth, he nonsensically suggests that I have proposed penalizing PP&L "for superior construction and timely completion of SSES": while I have not reviewed SSES construction to determine

whether it was in fact superior, it certainly was not In any case, the "penalty" Mr. Hecht refers to would timely. have been less if the plant were less expensive and greater if the plant had been more expensive, so I have proposed an approach which rewards PP&L for not having produced an even larger problem.⁷ Finally, he notes that I have not proposed any method for dealing with the costs which PP&L does not recover in the short term, and then continues by alleging that he knows what I would have suggested, had I addressed that issue. Mr. Hecht's presumption is astounding: since I have not addressed this issue, and have not formulated a recommendation, I can not understand how Mr. Hecht supposes he know what I would propose. If he has a suggestion for the Commission, he should make it directly, rather than testifying as to what I would propose. In any case, whether or not the Commission allows subsequent recovery of some or all of the costs which are not collected under a ratemaking approach which matches current rates to current benefits, the rates allowed in this case (or in this decade) would not be affected, and there is no need for the Commission to address

7. Mr. Hecht also notes that I have not challenged the prudence of PP&L's construction decisions. While he is correct in his observation, it results from the fact that I have not reviewed PP&L's decisions, which is a very time-consuming task if done properly, and should not be taken as an endorsement of PP&L's decisions. No party, including PP&L, has presented a comprehensive review of the construction and capacity planning decisions. I consider this to be an issue which has not been addressed in this case, rather than one which has been decided in favor of the company.

this issue in detail at this time.

- Q: How are Mr. Hecht's statements about the reliability value of SSES 2 misleading?
- A: Mr. Hecht presents the results of PJM member utility forecasts as the sole support of his contention that PJM will switch to a winter-peaking utility. I discuss in my testimony the reliability of PP&L's load forecasts, and I am sure that the Commission is familiar with the history of errors in other Pennsylvania utilities' load forecasts: Mr. Hect's confusion of these historically unreliable projections with real evidence of a shift to winter peak is

- 24 -

inexplicable.

Mr. Hecht's response to my discussion of the reliability value of SSES to PJM is hard to follow, because he again appears to be arguing with statements I did not make. For example, he claims that I asserted that large nuclear units "do not provide meaningful reliability benefits", when I clearly indicated that I expected those benefits to be equivalent to the reliability provided by gas turbines with about 60% of the units' capacity. These are meaningful, and even substantial, benefits (although fairly small in dollar terms compared to the cost of SSES), once the unit is needed for reliability.

Mr. Hecht also appears to spend a lot of time arguing with himself. He first asserts that I am wrong in saying that the maintenance requirements of nuclear units reduce their value to the PJM pool, and then asserts that "all units provide reliability benefits directly in relation to the unit's availability factor," which means that maintenance requirements do matter. Mr. Hecht's assertion that only availability matters is clearly an oversimplification, since in the next paragraph he admits that unit size also matters. For some reason, he asserts that I am wrong in stating that large units provide less reliability to PJM than the level

- 25 -

with which PJM credits them in setting utility required reserves. (PJM recognizes size differentials only for units over 1300 MW, which do not exist on the PJM system.) Everything he says on the subject supports the conclusion that large units provide less reliability than small units, per MW, although he is correct that this effect is less pronounced on a large system, such as PJM, than on a smaller system, such as an isolated PP&L.⁸

PP&Lload forecast While Mr. Hecht asserts that the incorporates energy/demand relationships, he does not provide any detail about the role of SSES 2 in PP&L's projection of electric price or demand. He does not even provide the price forecast or the elasticities utilized in the load forecast, nor does the description of the forecast model included in the company's direct case (Exhibit JOB 1) provide such information, even though it discusses such less-relevant issues as trends in producer prices. In any case, it is my understanding that the results of PP&L's econometric model were only one input examined by PP&L in determining its "consensus" forecasts in 1984. The results of PP&L's consensus were then increased by 1190 GWH above the consensus reflect PP&L's Marketing Plan goals for the period to Thus in reality PP&L's forecast is, as it is 1984-1987. titled, a "Planned Objective" sales target and not really a forecast at all. Further, even if PP&L properly incorporated the effects of its projections of SSES 2 costs, I expect that traditional ratemaking would

8. I noted the effect of system size in my testimony.

cause higher rates than PP&L forecasts, due to lower SSES 2 capacity factors and higher costs.

, I

Mr. Hecht complains that, if my ratemaking recommendations are followed, load growth may be higher in the 1980's than PP&L has projected, and that this is somehow unfair to PP&L. Indeed, if load grows faster, PP&L should be entitled sooner to receive a credit for the limited reliability benefits of the plant (about \$100 to \$200/kW).

- Q: How does Mr. Hecht admit that PP&L has overstated the benefits of SSES 2 power?
- A : In response to my questions about the costs projected for SSES 2 operating benefits, Mr. Hecht defends those high by explaining that projections PP&Lprojects that its marginal source of power (if not for PJM interchange) will largely be combustion turbines by 1995. This is a remarkable admission, since these very expensive peakers are not likely to be the least expensive source of replacement power: if PP&L did not have SSES 2, it would probably be able to obtain power at a cost below that of the turbines, from cogenerators under long-term contracts, or from out-of-region purchases."

Q. How are Mr. Hecht's comments on the importance of other PJM

- 27 -

^{9.} Mr. Hecht addresses this issue as if it indicated that I do not understand interchange pricing, when it really indicates that I was giving PP&L the benefit of the doubt concerning the level of its replacement power costs.

nuclear plant capacity factors on SSES 2 operating savings misleading?

A: First, he suggests that I should have run a two-system production costing model to correct PP&L's projections of capacity factors for other PJM nuclear units. That seems like an inordinate level of effort, considering the robustness of the basic result (SSES 2 will cost ratepayers much more than it saves them until well into the next decade) and the large uncertainties in all of the relevant projections. Second, he claims, without any specific documentation, that the present value of the operating savings from SSES (presumably referring to both units, and PP&L's very low discount rate) would increase by \$600 million (since corrected to \$900 million) if PP&L's projections of other units' capacity factors were reduced to the same extent that I suggest lowering PP&L's projections for SSES 2. Mr. Hecht does not present the initial or adjusted projections, nor does he explain how he determines the appropriate capacity factors for PWR's and for units much smaller than SSES. It is not clear that PP&L's projected capacity factors for Calvert Cliffs, for example, were even unreasonable. More importantly, the extra \$900 million in operating savings would apparently assume even greater dependence on combustion turbines as major energy producers, and is therefore unrealistic. Even if Mr. Hecht was correct, his refinement would have no effect on my conclusions.

- 28 -

6 - THE REBUTTAL TESTIMONY OF MR. KOPPE

- Q: What responses do you have to Mr. Koppe's rebuttal?
- A: The basic issue here is simple. Mr. Koppe believes that most of the problems of the nuclear industry are behind us, while I am not convinced that this is the case. Mr. Koppe's "evidence" for future improvements lies primarily in his judgements that the basic problems have been solved, that there are not nearly as many problems left to find, and that the previously unreasonable NRC has become more tractable.¹⁰ He may be correct, but many similar claims

about nuclear construction and operation made since the early 1970's (when it was already clear that the projections of the 1960's had been overoptimistic) have proven to be overstated. While the specific problems identified at any point in time may have been largely solved, new ones have repeatedly arisen. While

- 29 -

^{10.} The change in the NRC's attitude is attributed in part to a "recognition" that nuclear accidents are not as dangerous as previously thought. Mr. Koppe is not very specific about the source of this great revelation, but it appears to be the current industry line, replacing the low-probability argument of the Rasmussen report. It is my understanding that the industry had commissioned a series of studies to "prove" this point, since the low-probability arugment has not been supported by either engineering studies of actual plant operation or by analyses of insurers' implicit probability assessments. It remains to be seen whether this "recognition" does anything more to improve nuclear economics than did the Rasmussen report.

we may <u>hope</u> the Mr. Koppe is right this time, I do not believe that it is fair to expect the current ratepayers to assume all of the risks and costs which will airse if he is wrong.

- Q: Are there any specific points to which you wish to respond?
- Mr. Koppe describes my capacity factor projection as A: Yes. assuming that SSES 2 will have mature capacity factors equal to those of other large US BWR's in 1980-83. My analysis is much more complex than he suggests, and incorporates data on maturation and post-1980 effects from all US BWR's of more than 400 MW. He also mischaracterizes my description of the post-1980 decrease in nuclear capacity factor: Mr. Koppe suggests that I have attributed this effect to "regulatory requirements resulting from TMI", while I do not ascribe any particular cause to this decline (see pages 46 - 48 of my testimony).¹¹ He also suggests that I am predicting that exactly the same problems will occur in the future as occurred in the past, despite the fact that I specifically address that point on pages 51 and 52 of my testimony. Mr. Koppe, like the other PP&L witnesses, asserts the new NRC safety requirements have decreased, but offers no

^{11.} I refer on page 51 to "the regulatory effects of" TMI, but I intended that to mean the general climate of regulatory caution which resulted from the experience at TMI, rather than "lessons-learned" types of effects.

demonstration of such a phenomenon.¹² He suggests that only one serious nuclear accident has taken place (presumably TMI), even though Browns Ferry was also a major accident from a regulatory standpoint, as Mr. Curtis testifies in his rebuttal.¹³

- Q: Are Mr. Koppe's criticisms of regression analysis approriate?
- A: Not really. The Komanoff studies are very old, and the Rosen and Perl studies assume maturation effects which are not strongly demonstrated by the data. The Perl study also uses very small units and PWR's, and therefore is not comparable to the other analyses, or to mine. It is not suprising that these studies differ in their results, given the differences in their data bases, and in the specification of the maturation effects.
- Q: Are Mr. Koppe's comments about the size effect you assume relevant?

_ _ _ _ _ _ _ _ _ _ _

13. Mr. Koppe's estimate of 800 unit-years of operation in the US apparently includes the experience of the very small demonstration reactors, pre-commercial operation, and periods of prolonged shutdown, such as of TMI 1. Observing two significant accidents in 800 reactor-years is consistent with a wide range of underlying probabilities.

^{12.} A slow-down in regulation has been predicted many times by the nuclear industry, and by the regulators themselves, but costs have continued to increase and capacity factors have continued to lag expectations.

- A: No. First, he criticizes my use of the the term "strong" to describe size trends in fossil plants, but then reports that he found such trends. By "strong", I mean that a clear, non-random relationship exists, and Mr. Koppe appears to agree. Second, he asserts that I claim a 3% decrease in capacity factor per 100 MW of capacity, compared to the 1% or so that he thinks is reasonable. In fact, the effect of my size variable is swamped by the GT1000 variable, which increases the capacity factor projection for SSES 2 by 14.7%, raising it to about the same level as the projection for a 600 MW BWR. Thus, for the SSES units, my projection uses almost no size trend.
- Q: Are Mr. Koppe's comments about the quality of the economic derating data correct?
- A: No. Mr. Koppe relies on the representations of the utilities as to the potential ouput of their plants. He has no way of knowing whether the "economic" deratings were actually technical in nature. A good example of this problem is a situation which arose with Trojan (a PWR, and therefore not in my data set for SSES 2 capacity factor) in 1979. The plant shut down for "maintenance, surveillance, and containment leak rate testing" and returned to service 1608 hours later: however, exactly the last 1000 hours of the outage were classified as "economic". I know of no way to confirm that the plant was actually ready to operate in those last 1000

- 32 -

hours.

- Q: Are there any other points you would like to emphasis with respect to Mr. Koppe's testimony?
- A: He apparently believes that O&M "projections for 1985 and beyond" are inherently valid, despite the dismal record of the nuclear industry in projecting such costs

Ĕ

ŧ

Q: Does this conclude your rebuttal testimony?

A: Yes.

Re: Seabrook Unit I DPU 84-152 AG Request 2-115

Date Received: September 17, 1984 Date Responded: September 26, 1984

22

AG 2-115 Q. Please provide and document the number of "new regulations requiring additional capital expenditures" (page 7), annually for 1970 to 1984. If this list does not include all AEC/NRC regulations, guides, interpretations, and other regulatory documents, please explain how the relevant documents were identified or selected.

AG 2-115 A. Please see response to CMRR 1-57. Also see the attached schedule for a testing of various NRC releases. This list was compiled by the Yankee Atomic Corporation.

Re: Seabrook Unit 1 DPU 84-152 September 26, 1984 AG Request 2-115 One Page Schedule

GENERIC LETTERS

<u>1977</u>	<u>1</u> /	<u>1978</u>	<u>1979</u>	<u>1980</u>	<u>) 1981 2</u>	/ 1982	1983
4		28	56	58	40	39	44
1.	From	12/77. ides one	supplement.	one	draft, and	one letter	never

issued.

ILE DOCUMENTS 1/

Bulletins	$\frac{73}{6} \frac{2}{2}$	$\frac{74}{19} \frac{2}{2}$	$\frac{75}{11}$	$\frac{76}{7}$	<u>77</u> 9	78 15	<u>79</u> 51	<u>80</u> 32	<u>81</u> 5	82	$\frac{83}{10}$
		(16)	(8)		(8)	(14)	(28)	(25)	(3)	(4)	(8)
Circulars				7	17	19	25	25	15	0	0
Info. Notices							38	45	39	56 (3)	84

1. Includes supplements and revisions, number in () indicates originals.

2. Issued as regulatory operations bulletins.

· `,

<u>70</u> <u>4</u>

		F	EGULA	TORY	GUIDE	S (Di	(Division 1) <u>1</u> /			
$\frac{71}{12}$ $\frac{72}{14}$	$\frac{73}{34}$	74	$\frac{75}{11}$	$\frac{76}{17}$	$\frac{77}{12}$	78	<u>79</u>	80	81	82

1. Original guide issued calendar year.

Updated thru 1983

、

22

 $\frac{83}{1}$

presents the least-squares estimates of annual linear growth (in 1983 dollars) and of annual geometric growth rates,⁶⁹ and the six-unit average of each parameter. Each unit is analyzed from its first full year of service through 1982.

- Q: Have you similarly examined the national history of nuclear O&M?
- Appendix C lists the non-fuel O&M for each full A: Yes. operating year from 1968 to the most recent data available. Years in which units were added have been eliminated. Table 3.24 presents the results of five regressions using the data for plants of more than 300 MW, from Appendix C, in 1983 dollars. A total of 413 observations were available. All five equations indicate that real O&M costs have increased at 13.6% to 13.8% annually, and that the economies-of-scale factor for nuclear O&M is about 0.50 to 0.57, so doubling the size of a plant (in Equations 1 and 2) or of a unit (in Equations 3 and 4) increases the O&M cost by about 42-48%. Equations 1 and 2 indicate that, once total plant size has been accounted for, the number of units is inconsequential, and the effect on O&M expense is statistically insignificant: indeed, the two equations disagree on the sign of the small effects they do detect. Equations 3 and 4 both measure size

69. The curves all fit the data fairly well; if there is an overall difference in fit, it is the geometric curves which better follow the data.

as MW per unit, and they both find that the effect of adding a second identical unit is just a little less than the effect of doubling the size of the first unit: 43% for Equation 3 and 39% for Equation 4.⁷⁰ Equation 5 tests for extra costs in the Northeast, which are commonly found in studies of nuclear plant construction and operating costs, but is otherwise identical to Equation 3. Indeed, there is a highly significant differential: Northeast plants cost 28% more to operate than other plants (using the definition of North Atlantic from the Handy-Whitman index). This Equation is the most satisfactory of the national regression results.

- Q: What O&M cost projection do you use in your Seabrook cost analysis?
- A: Table 3.25 extrapolates the New England linear and geometric average trends, and the national regression results evaluated for Seabrook, and displays the annual nominal O & M cost and the levelized O & M cost (in 1984\$) for Seabrook over a 25 year life. Protracted geometric growth in real O & M cost would probably lead to retirement of all the nuclear units around the turn of the century, as they would then be prohibitively expensive to operate (unless the alternatives

^{70.} The two equations do treat extra units differently after the second: a third unit increases costs by another 39% (or 55% of the first-unit cost) in Equation 4, but only by 23% (or 33% of the first-unit cost) in Equation 3. The treatment of additional units in Equation 3 seems more plausible, in that each succeeding unit should be progressively less expensive to run.

managed to be even more expensive).

High costs of O & M and necessary capital additions were responsible for the retirement (formal or de facto) of Indian Point 1, Humboldt Bay, and Dresden 1, after only 12, 13, and 18 years of operation, respectively. Thus, rising costs caught up to most of the small pre-1965 reactors during the 1970's: only Big Rock Point and Yankee Rowe remain from that cohort. The operator of LaCrosse, a small reactor of 1969 vintage, has announced plans to retire it in the late 1980's. San Onofre 1, a 430-mw unit which entered service in 1968, has been shut down since February, 1982, and has no firm plans for restart. To be on the optimistic side, I have assumed a continuation of the linear trends in New England nuclear cost escalation; using the average experience of the existing units would produce 25-year real levelized O&M costs of about \$71.8/kw in 1984 dollars. However, since the national regressions indicate clearly that larger units have higher O&M costs than small ones, it is appropriate to increase this cost by 31%, to \$94.1/kw-yr to reflect the difference between Seabrook's size and that of the existing New England nuclear units.⁷¹

Q: Is it appropriate to include the period since 1979, when the

71. This percentage is the average over the six existing units of the size effect, predicted by Equation 5, for an increase in size from the unit's MGN to the 1194 MGN of Seabrook.

- 98 -

AFd.	F	3	22*	NEW	ENG

• •

TABLE 3.22: NEW ENGLAND NUCLEAR O & M HISTORIES

Year	Conn. Yankee	Mill- stone 1	Mill- stone 2	Filgrim	Vermont Yankee	Maine Yankee	GNP Deflator
				(\$ thousa	nd)		
1968	2,047						82.54
1969	2,067						86.79
1970	4,479						91.45
1971	3,279						96.01
1972	3,749	7,677					100.00
1973	6,352	7,635		4,797	4,957	4,034	105.75
1974	4,935	9,808		9,527	5,692	5,232	115.08
1975	9,381	12,065		7,340	7,682	6,301	125.79
1976	9,419	14,040	10,929	16,633	7,912	5,261	132.34
1977	9,448	12,637	17,377	15,320	9,775	8,418	140.05
1978	8,736	16,448	22,288	14,187	11,191	10,817	150.42
1979	18,923	23,060	21,931	18,387	14,208	9,971	163.42
1980	35,155	24,784	30,163	27,785	22,586	14,028	178.42
1981	37,488	33,270	28,877	34,994	26,795	20,576	195.14
1982	35,722	33,463	45,247	42,437	33,764	28,554	206.88
1983	48,671	43,569	56,452	46,268	46,310	21,557	215.63

Annual Growth Rate to 1983:

Nominal:	23.5%	17.1%	26.4%	25.4%	25.0%	18.2%	4.9;
Real:	15.86%	9.20%	17.92%	16.81%	16.44%	10.11%	

×.,

.

TABLE 3.23: CALCULATION OF AVERAGE NEW ENGLAND EXPERIENCE Non-Fuel Nuclear O & M Expense, Constant Dollars

			Least - Squares Annual Growth			
Unit	Period Analyzed	1983 D & M	Linear Increase	Geometric Increase		
		(1000)	<pre>(1000 1983\$)</pre>			
Conn. Yankee	1968-83	\$48,671	\$2,726.4	15.6%		
Millstone 1	1971-83	\$43,569	\$2,466.3	11.7%		
Millstone 2	1976-83	\$56,452	\$4,523.1	14.2%		
Pilgrim	1973-83	\$46,268	\$3,453.2	14.8%		
Vermont Yankee	1973-83	\$46,310	\$3,281.3	16.2%		
Maine Yankee	1973-83	\$21,557	\$1,933.1	12.7%		
AVERAGES: 1983≢ 1984≢ [1]		\$43,805 \$45,557	≠3,063.9 \$3,186.5	14.2%		

<u>у</u>љ.

Notes: [1] 1984\$=1983\$*1.04

.

TABLE 3.24: RESULTS OF REGRESSION ON OWN DATA

і <u>х</u>

	Equation 1		Equation 2		Equation 3		Equation 4		Equation 5	
	Caef	t-stat	Coef	t-stat	Coef	t-stat	Coef	t-stat	Coef	t-stat
CONSTANT	-3.76	-6.88	-3.48	-6.92	-3.76	-6.88	-4.14	-7.77	-3.90	-7.49
ln(NW) [2]	0.56	7.86	0.50	7.33		-*				
ln(UNITS)	-0.05	-0.48			0.52	10.41			0.63	12.58
YEAR [3]	0.13	22.45	0.13	22.60	0.13	22.45	0.13	22.78	0.13	23.93
UNITS			0.03	0.54			0.33	10.98		
ln(MW/unit)					0.56	7.86	0.57	8.04	0.54	7.95
NE [4]									0.25	6.69
Adjusted R		0.71		0.71		0.71		0.71		0.73
F statistic		329.2		329.2		329.2		340.1		284.4

Notes: [1] The dependent variable in each equation is ln(non-fuel O&M in 1983\$)

- [2] MW = number of MegaWatt in Design Electrical Rating (DER)
- [3] YEAR = Calendar Year 1900; e.g., 1985 = 85.
- [4] NE is a dummy variable which measures whether the plant is located in the Northeast Region (defined as Handy Whitman's North Atlantic Region), where Susquehanna 2 is located. NE = 1 if located in Northeast Region, 0 if elsewhere.

 \sim

	Linear N.	E. Experience	Geometric N.	E. Experience	National Experience		
Year	1984 \$	Current\$	 1984 \$	Current\$	1984\$	Current\$	
	 {?]			 F & J			
1997	\$59 303	649 A79	\$77 510	497 314	\$75 947	\$99 454	
1999	443 490	\$77.329	\$99 574	\$111 740	496,007 496 TAA	\$104 950	
1020	\$61,40, \$61 475	484 550	\$101 103	\$135 298	100,044 199 7%7	\$129 023	
1990	\$67,873	\$94 743	4115 ALG	4123,275	±111 977	4155 450	
1001	\$71 049	\$104 970	\$171 977	*100,170	*11,007	\$133,03V	
1771	#71,075 \$78 775	\$100,000 \$110.710	\$131,077 \$150 L15	#170,277 \$710 059	#127,201 #148 057	#10/;//L #771 578	
1007	\$77 101	*110,017 *130,907	\$130,313 \$172 A17	#240,038 #290 219	#177,0J/ #128.0LA	\$220,324 \$277 973	
1773	*//,721 \$90 L09	\$130,002 \$134 351	\$172,017 \$106 860	#270,017 \$751 000	\$107,000 \$107 LOL	\$213,213 \$770 L70	
1005	\$0V,0V0 \$07 794	#177,000 \$150 ALL	\$170,400 \$978 775	#3314327 #475 071	1107,010 2017 575	\$327,070 \$797 70L	
1773	\$03,777 601 301	\$137,000 \$175 000	*227,313 2751 750	87239731 8515 221	#213,333 #717 A77	\$377,700 \$170 707	
1773	\$00,701 \$00 117	\$17JjUZZ \$107 770	\$£38,£38 \$707 £71	\$JIJ,071 #178 785 "	\$293;U23 2071 500	19/7,/03 2570 700	
177/	\$70,10/ 407 758	\$172,320 #711 ALT	\$272,071 \$771 057	9029,293 2765 791	\$2/0,302 #718 77E	\$3/3,173 #100 080	
1770	\$73,334 201 510	\$211,000	\$JJ4∉±J/ ★701 767	\$/33;/14 *n1* nn*	7017;//3 #750 017	3070,247 2010,750	
1777	#70,34V #00,391	\$201,004 \$057 740	\$381,/33 #475 000	1714,074 *1 107 EDD	\$038,240 *107 717	2042,33U	
2000	377,120	¥203,340	3453,778	1 ,107,387	\$407,713 ##/#_A##	\$1,018,171 ** 005 000	
2001	\$102,913	¥2//,121	¥47/,731	¥1,340,367	\$464,VI4 *520,000	\$1,223,707	
2002	3106,077	\$302,344 \$770 / FE	3388,707	31,823,283	*323,070	\$1,4/8,7V/	
2003	3109,285	3000,000	3647,317	*1,753,177	\$601,014	P1 ,/84,118	
2004	\$112,472	\$360,714	\$/41,310	\$2,579,083	\$684,009	¥Z,13Z,318 #2 50/ 505	
2005	\$115,659	\$373,187	3847,217	\$2,380,167	\$773,464	\$2,376,303	
2005	\$118,345	\$428,253	\$967,501	\$3,488,787	\$885,962	\$3,132,381	
2007	\$122,032	\$466,130	\$1,105,092	\$4,221,1/4	\$1,008,305	\$3,778,808	
2008	\$125,218	\$507,000	\$1,262,119	\$5,110,237	\$1,147,543	\$4,558,661	
2009	\$123,405	\$551,096	\$1,441,459	\$6,186,555	\$1,306,008	\$5,499,459	
2010	\$131,591	\$598,558	\$1,546,282	\$7,489,566	\$1,486,356	\$6,534,415	
2011	\$134,777	\$649,944	\$1,380,209	\$9,067,017	\$1,591,508	\$8,003,601	
2012	\$137,964	\$705,229	\$2,147,375	\$10,975,711	\$1,925,203	\$9,355,353	

TABLE 3.25: ANNUAL NON-FUEL O & M EXPENSE FOR SEABROOK (\$thousand) EXTRAPOLATED FROM NEW ENGLAND AND NATIONAL EXPERIENCE

,

LEVELIZED

1987- 2012: [1]	\$82,579	\$151,510	\$332,525	\$657,524	\$309,429	\$599,589
\$/k#-yr	\$71.8	\$131.8	\$289.2	\$571.8	\$269.1	\$520.5

 \leq

Notes: 1. Approximately the useful life of Seabrook 1.

- 2. Average New England 1983 nuclear O&M,plus (year-1984) times average annual increase, both in 1984\$, from Table 3.23.
- 3. Average New England 1983 nuclear O&M, in 1984\$, times (1 + average geometric increase) ^ (year-1984), from Table 3.23 $^{\infty}$

4. At 5% inflation.